These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16624512)

  • 1. Specific plasticity responses to unilaterally decreased or increased hearing intensity in the adult cochlear nucleus and beyond.
    Illing RB; Reisch A
    Hear Res; 2006; 216-217():189-97. PubMed ID: 16624512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.
    Michler SA; Illing RB
    J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear damage induces GAP-43 expression in cholinergic synapses of the cochlear nucleus in the adult rat: a light and electron microscopic study.
    Meidinger MA; Hildebrandt-Schoenfeld H; Illing RB
    Eur J Neurosci; 2006 Jun; 23(12):3187-99. PubMed ID: 16820009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immediate early gene expression invoked by electrical intracochlear stimulation in some but not all types of neurons in the rat auditory brainstem.
    Reisch A; Illing RB; Laszig R
    Exp Neurol; 2007 Dec; 208(2):193-206. PubMed ID: 17825819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconnecting neuronal networks in the auditory brainstem following unilateral deafening.
    Illing RB; Kraus KS; Meidinger MA
    Hear Res; 2005 Aug; 206(1-2):185-99. PubMed ID: 16081008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior olivary contributions to auditory system plasticity: medial but not lateral olivocochlear neurons are the source of cochleotomy-induced GAP-43 expression in the ventral cochlear nucleus.
    Kraus KS; Illing RB
    J Comp Neurol; 2004 Jul; 475(3):374-90. PubMed ID: 15221952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the plasticity potential of the auditory brain stem nucleus in the rat.
    Illing RB; Förster CR; Horváth M
    Am J Otol; 1997 Nov; 18(6 Suppl):S52-3. PubMed ID: 9391595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MMP-2 is involved in synaptic remodeling after cochlear lesion.
    Fredrich M; Illing RB
    Neuroreport; 2010 Mar; 21(5):324-7. PubMed ID: 20173666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The utilization of brain plasticity by cochlear implants : Molecular and cellular changes due to electrical intracochlear stimulation].
    Rosskothen-Kuhl N; Illing RB
    HNO; 2015 Feb; 63(2):94-103. PubMed ID: 25686598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylated cAMP response element-binding protein levels in guinea pig brainstem auditory nuclei after unilateral cochlear ablation.
    Mo Z; Suneja SK; Potashner SJ
    J Neurosci Res; 2006 May; 83(7):1323-30. PubMed ID: 16511870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pattern of Fos expression in the rat auditory brainstem changes with the temporal structure of binaural electrical intracochlear stimulation.
    Jakob TF; Döring U; Illing RB
    Exp Neurol; 2015 Apr; 266():55-67. PubMed ID: 25708983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent plasticity in the adult auditory brainstem.
    Illing RB
    Audiol Neurootol; 2001; 6(6):319-45. PubMed ID: 11847462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cochlear ablation on muscarinic acetylcholine receptor binding in the rat cochlear nucleus.
    Jin YM; Godfrey DA
    J Neurosci Res; 2006 Jan; 83(1):157-66. PubMed ID: 16307447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity of the superior olivary complex.
    Illing RB; Kraus KS; Michler SA
    Microsc Res Tech; 2000 Nov; 51(4):364-81. PubMed ID: 11071720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation by cochlear implant in unilaterally deaf rats reverses the decrease of inhibitory transmission in the inferior colliculus.
    Argence M; Vassias I; Kerhuel L; Vidal PP; de Waele C
    Eur J Neurosci; 2008 Oct; 28(8):1589-602. PubMed ID: 18973578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear implants: the view from the brain.
    Middlebrooks JC; Bierer JA; Snyder RL
    Curr Opin Neurobiol; 2005 Aug; 15(4):488-93. PubMed ID: 16009544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and molecular bases of neuroplasticity: brainstem effects after cochlear damage.
    Gil-Loyzaga P; Carricondo F; Bartolomé MV; Iglesias MC; Rodríguez F; Poch-Broto J
    Acta Otolaryngol; 2010 Mar; 130(3):318-25. PubMed ID: 19593683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.
    Thai-Van H; Cozma S; Boutitie F; Disant F; Truy E; Collet L
    Clin Neurophysiol; 2007 Mar; 118(3):676-89. PubMed ID: 17223382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: does synaptic plasticity in ventral cochlear nucleus suppress tinnitus?
    Kraus KS; Ding D; Jiang H; Lobarinas E; Sun W; Salvi RJ
    Neuroscience; 2011 Oct; 194():309-25. PubMed ID: 21821100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.