These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16624879)

  • 1. Common attributes of native-state structures of proteins, disordered proteins, and amyloid.
    Hoang TX; Marsella L; Trovato A; Seno F; Banavar JR; Maritan A
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6883-8. PubMed ID: 16624879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Native globular and native partially or completely disordered proteins. Folding, supramolecular complex formation and aggregation].
    Turoverov KK; Uverskiĭ VN; Kuznetsova IM
    Tsitologiia; 2009; 51(3):190-203. PubMed ID: 19435273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakdown of supersaturation barrier links protein folding to amyloid formation.
    Noji M; Samejima T; Yamaguchi K; So M; Yuzu K; Chatani E; Akazawa-Ogawa Y; Hagihara Y; Kawata Y; Ikenaka K; Mochizuki H; Kardos J; Otzen DE; Bellotti V; Buchner J; Goto Y
    Commun Biol; 2021 Jan; 4(1):120. PubMed ID: 33500517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of amyloidogenic and disordered regions in protein chains.
    Galzitskaya OV; Garbuzynskiy SO; Lobanov MY
    PLoS Comput Biol; 2006 Dec; 2(12):e177. PubMed ID: 17196033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro.
    Jones S; Manning J; Kad NM; Radford SE
    J Mol Biol; 2003 Jan; 325(2):249-57. PubMed ID: 12488093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of kinetic pathways in amyloid fibril formation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Sep; 131(11):111102. PubMed ID: 19778093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of Aggregation-Prone Segments is the Requirement for Amyloid Fibril Formation.
    Pramanik S; Ahmad B
    Curr Protein Pept Sci; 2018; 19(10):1024-1035. PubMed ID: 29779477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics of proteins.
    Banavar JR; Maritan A
    Annu Rev Biophys Biomol Struct; 2007; 36():261-80. PubMed ID: 17477839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation.
    Sievers SA; Karanicolas J; Chang HW; Zhao A; Jiang L; Zirafi O; Stevens JT; Münch J; Baker D; Eisenberg D
    Nature; 2011 Jun; 475(7354):96-100. PubMed ID: 21677644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber.
    Papanikolopoulou K; Schoehn G; Forge V; Forsyth VT; Riekel C; Hernandez JF; Ruigrok RW; Mitraki A
    J Biol Chem; 2005 Jan; 280(4):2481-90. PubMed ID: 15513921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational studies of the structure, dynamics and native content of amyloid-like fibrils of ribonuclease A.
    Colombo G; Meli M; De Simone A
    Proteins; 2008 Feb; 70(3):863-72. PubMed ID: 17803210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of polypeptide aggregation in human diseases.
    Khare SD; Dokholyan NV
    Curr Protein Pept Sci; 2007 Dec; 8(6):573-9. PubMed ID: 18220844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation as conformational switch from the native to amyloid state: Trp-cage as a protein aggregation model.
    Kardos J; Kiss B; Micsonai A; Rovó P; Menyhárd DK; Kovács J; Váradi G; Tóth GK; Perczel A
    J Phys Chem B; 2015 Feb; 119(7):2946-55. PubMed ID: 25625571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural models of amyloid-like fibrils.
    Nelson R; Eisenberg D
    Adv Protein Chem; 2006; 73():235-82. PubMed ID: 17190616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of water in protein folding, oligomerization, amyloidosis and miniprotein.
    Vajda T; Perczel A
    J Pept Sci; 2014 Oct; 20(10):747-59. PubMed ID: 25098401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically semi-disordered state and its role in induced folding and protein aggregation.
    Zhang T; Faraggi E; Li Z; Zhou Y
    Cell Biochem Biophys; 2013; 67(3):1193-205. PubMed ID: 23723000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid formation by intrinsically disordered trans-activation domain of cMyb.
    Gadhave K; Giri R
    Biochem Biophys Res Commun; 2020 Apr; 524(2):446-452. PubMed ID: 32007275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Linking Mass Spectrometry Analysis of Metastable Compact Structures in Intrinsically Disordered Proteins.
    Chen D; Joachimiak LA
    Methods Mol Biol; 2023; 2551():189-201. PubMed ID: 36310204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid formation by globular proteins under native conditions.
    Chiti F; Dobson CM
    Nat Chem Biol; 2009 Jan; 5(1):15-22. PubMed ID: 19088715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The native state of prion protein (PrP) directly inhibits formation of PrP-amyloid fibrils in vitro.
    Honda RP; Kuwata K
    Sci Rep; 2017 Apr; 7(1):562. PubMed ID: 28373719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.