These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16624908)

  • 1. Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data.
    Tanaka MM; Francis AR; Luciani F; Sisson SA
    Genetics; 2006 Jul; 173(3):1511-20. PubMed ID: 16624908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact vs. approximate computation: reconciling different estimates of Mycobacterium tuberculosis epidemiological parameters.
    Aandahl RZ; Stadler T; Sisson SA; Tanaka MM
    Genetics; 2014 Apr; 196(4):1227-30. PubMed ID: 24496011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring epidemiological parameters on the basis of allele frequencies.
    Stadler T
    Genetics; 2011 Jul; 188(3):663-72. PubMed ID: 21546541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissemination of Mycobacterium tuberculosis across the San Francisco Bay Area.
    Bradford WZ; Koehler J; El-Hajj H; Hopewell PC; Reingold AL; Agasino CB; Cave MD; Rane S; Yang Z; Crane CM; Small PM
    J Infect Dis; 1998 Apr; 177(4):1104-7. PubMed ID: 9534993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of multiple markers in population-based molecular epidemiologic studies of tuberculosis.
    Rhee JT; Tanaka MM; Behr MA; Agasino CB; Paz EA; Hopewell PC; Small PM
    Int J Tuberc Lung Dis; 2000 Dec; 4(12):1111-9. PubMed ID: 11144452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding tuberculosis epidemiology using structured statistical models.
    Getoor L; Rhee JT; Koller D; Small P
    Artif Intell Med; 2004 Mar; 30(3):233-56. PubMed ID: 15081074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative impact of human immunodeficiency virus infection on tuberculosis dynamics.
    DeRiemer K; Kawamura LM; Hopewell PC; Daley CL
    Am J Respir Crit Care Med; 2007 Nov; 176(9):936-44. PubMed ID: 17690336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Identifiability of Transmission Dynamic Models for Infectious Diseases.
    Lintusaari J; Gutmann MU; Kaski S; Corander J
    Genetics; 2016 Mar; 202(3):911-8. PubMed ID: 26739450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidemiology of Mycobacterium tuberculosis strains in San Francisco that do not contain IS6110.
    Agasino CB; Ponce de Leon A; Jasmer RM; Small PM
    Int J Tuberc Lung Dis; 1998 Jun; 2(6):518-20. PubMed ID: 9626611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuberculosis in healthcare workers: a molecular epidemiologic study in San Francisco.
    Ong A; Rudoy I; Gonzalez LC; Creasman J; Kawamura LM; Daley CL
    Infect Control Hosp Epidemiol; 2006 May; 27(5):453-8. PubMed ID: 16671025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving outbreak dynamics using approximate Bayesian computation for stochastic birth-death models.
    Lintusaari J; Blomstedt P; Rose B; Sivula T; Gutmann MU; Kaski S; Corander J
    Wellcome Open Res; 2019; 4():14. PubMed ID: 37744419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of drug resistance on the generation of secondary cases of tuberculosis.
    Burgos M; DeRiemer K; Small PM; Hopewell PC; Daley CL
    J Infect Dis; 2003 Dec; 188(12):1878-84. PubMed ID: 14673768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of genetic distance as a measure of ongoing transmission of Mycobacterium tuberculosis.
    van der Spuy GD; Warren RM; Richardson M; Beyers N; Behr MA; van Helden PD
    J Clin Microbiol; 2003 Dec; 41(12):5640-4. PubMed ID: 14662954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring Rates and Length-Distributions of Indels Using Approximate Bayesian Computation.
    Levy Karin E; Shkedy D; Ashkenazy H; Cartwright RA; Pupko T
    Genome Biol Evol; 2017 May; 9(5):1280-1294. PubMed ID: 28453624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A field-validated approach using surveillance and genotyping data to estimate tuberculosis attributable to recent transmission in the United States.
    France AM; Grant J; Kammerer JS; Navin TR
    Am J Epidemiol; 2015 Nov; 182(9):799-807. PubMed ID: 26464470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular epidemiologic analysis of tuberculosis trends in San Francisco, 1991-1997.
    Jasmer RM; Hahn JA; Small PM; Daley CL; Behr MA; Moss AR; Creasman JM; Schecter GF; Paz EA; Hopewell PC
    Ann Intern Med; 1999 Jun; 130(12):971-8. PubMed ID: 10383367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of indices for quantifying tuberculosis transmission using genotypes of pathogen isolates.
    Tanaka MM; Phong R; Francis AR
    BMC Infect Dis; 2006 Jun; 6():92. PubMed ID: 16756684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Future prospects of molecular epidemiology in tuberculosis].
    Matsumoto T; Iwamoto T
    Kekkaku; 2009 Dec; 84(12):783-4. PubMed ID: 20077862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of Mycobacterium tuberculosis DNA genotypes.
    Yeh RW; Ponce de Leon A; Agasino CB; Hahn JA; Daley CL; Hopewell PC; Small PM
    J Infect Dis; 1998 Apr; 177(4):1107-11. PubMed ID: 9534994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex differences in the epidemiology of tuberculosis in San Francisco.
    Martinez AN; Rhee JT; Small PM; Behr MA
    Int J Tuberc Lung Dis; 2000 Jan; 4(1):26-31. PubMed ID: 10654640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.