These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 16624937)

  • 1. Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex.
    Bender VA; Bender KJ; Brasier DJ; Feldman DE
    J Neurosci; 2006 Apr; 26(16):4166-77. PubMed ID: 16624937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus.
    Andrade-Talavera Y; Duque-Feria P; Paulsen O; Rodríguez-Moreno A
    Cereb Cortex; 2016 Aug; 26(8):3637-3654. PubMed ID: 27282393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex.
    Banerjee A; Meredith RM; Rodríguez-Moreno A; Mierau SB; Auberson YP; Paulsen O
    Cereb Cortex; 2009 Dec; 19(12):2959-69. PubMed ID: 19363149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity.
    Fino E; Paille V; Cui Y; Morera-Herreras T; Deniau JM; Venance L
    J Physiol; 2010 Aug; 588(Pt 16):3045-62. PubMed ID: 20603333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of spike-timing dependent plasticity: one or two coincidence detectors?
    Karmarkar UR; Buonomano DV
    J Neurophysiol; 2002 Jul; 88(1):507-13. PubMed ID: 12091572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms and significance of spike-timing dependent plasticity.
    Karmarkar UR; Najarian MT; Buonomano DV
    Biol Cybern; 2002 Dec; 87(5-6):373-82. PubMed ID: 12461627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spine Ca2+ signaling in spike-timing-dependent plasticity.
    Nevian T; Sakmann B
    J Neurosci; 2006 Oct; 26(43):11001-13. PubMed ID: 17065442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental Switch in Spike Timing-Dependent Plasticity and Cannabinoid-Dependent Reorganization of the Thalamocortical Projection in the Barrel Cortex.
    Itami C; Huang JY; Yamasaki M; Watanabe M; Lu HC; Kimura F
    J Neurosci; 2016 Jun; 36(26):7039-54. PubMed ID: 27358460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices.
    Fino E; Deniau JM; Venance L
    J Physiol; 2008 Jan; 586(1):265-82. PubMed ID: 17974593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel presynaptic mechanisms for coincidence detection in synaptic plasticity.
    Duguid I; Sjöström PJ
    Curr Opin Neurobiol; 2006 Jun; 16(3):312-22. PubMed ID: 16713246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic induction and expression of timing-dependent long-term depression demonstrated by compartment-specific photorelease of a use-dependent NMDA receptor antagonist.
    Rodríguez-Moreno A; Kohl MM; Reeve JE; Eaton TR; Collins HA; Anderson HL; Paulsen O
    J Neurosci; 2011 Jun; 31(23):8564-8569. PubMed ID: 21653860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental switch in spike timing-dependent plasticity at layers 4-2/3 in the rodent barrel cortex.
    Itami C; Kimura F
    J Neurosci; 2012 Oct; 32(43):15000-11. PubMed ID: 23100422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-methyl-D-aspartate receptor-independent long-term depression and depotentiation in the sensorimotor cortex of the freely moving rat.
    Froc DJ; Racine RJ
    Neuroscience; 2004; 129(2):273-81. PubMed ID: 15501586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses.
    Sjöström PJ; Turrigiano GG; Nelson SB
    Neuropharmacology; 2007 Jan; 52(1):176-84. PubMed ID: 16895733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-timing-dependent plasticity at resting and conditioned lateral perforant path synapses on granule cells in the dentate gyrus: different roles of N-methyl-D-aspartate and group I metabotropic glutamate receptors.
    Lin YW; Yang HW; Wang HJ; Gong CL; Chiu TH; Min MY
    Eur J Neurosci; 2006 May; 23(9):2362-74. PubMed ID: 16706844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
    Pawlak V; Kerr JN
    J Neurosci; 2008 Mar; 28(10):2435-46. PubMed ID: 18322089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrates for coincidence detection and calcium signaling for induction of synaptic potentiation in the neonatal visual cortex.
    Schrader LA; Perrett SP; Ye L; Friedlander MJ
    J Neurophysiol; 2004 Jun; 91(6):2747-64. PubMed ID: 14973315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine-enabled anti-Hebbian timing-dependent plasticity in prefrontal circuitry.
    Ruan H; Saur T; Yao WD
    Front Neural Circuits; 2014; 8():38. PubMed ID: 24795571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.