BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16624962)

  • 1. Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus.
    Hirata A; Aguilar J; Castro-Alamancos MA
    J Neurosci; 2006 Apr; 26(16):4426-36. PubMed ID: 16624962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal gating of sensory inputs in thalamus during quiescent and activated states.
    Aguilar JR; Castro-Alamancos MA
    J Neurosci; 2005 Nov; 25(47):10990-1002. PubMed ID: 16306412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromodulators produce distinct activated states in neocortex.
    Castro-Alamancos MA; Gulati T
    J Neurosci; 2014 Sep; 34(37):12353-67. PubMed ID: 25209276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-pass filtering of corticothalamic activity by neuromodulators released in the thalamus during arousal: in vitro and in vivo.
    Castro-Alamancos MA; Calcagnotto ME
    J Neurophysiol; 2001 Apr; 85(4):1489-97. PubMed ID: 11287472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback.
    Landisman CE; Connors BW
    Cereb Cortex; 2007 Dec; 17(12):2853-65. PubMed ID: 17389627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: a combined modeling and in vivo multi-channel, multi-neuron recording study.
    Moxon KA; Devilbiss DM; Chapin JK; Waterhouse BD
    Brain Res; 2007 May; 1147():105-23. PubMed ID: 17368434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging.
    Sottile SY; Hackett TA; Cai R; Ling L; Llano DA; Caspary DM
    J Neurosci; 2017 Nov; 37(47):11377-11389. PubMed ID: 29061702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.
    Li L; Ebner FF
    Exp Brain Res; 2006 Jul; 172(3):397-415. PubMed ID: 16429268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relief of synaptic depression produces long-term enhancement in thalamocortical networks.
    Hirata A; Castro-Alamancos MA
    J Neurophysiol; 2006 Apr; 95(4):2479-91. PubMed ID: 16381803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemically administered cocaine alters stimulus-evoked responses of thalamic somatosensory neurons to perithreshold vibrissae stimulation.
    Rutter JJ; Baumann MH; Waterhouse BD
    Brain Res; 1998 Jul; 798(1-2):7-17. PubMed ID: 9666059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons.
    BĂ©huret S; Deleuze C; Bal T
    Front Neural Circuits; 2015; 9():80. PubMed ID: 26733818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs.
    Castro-Alamancos MA
    J Neurophysiol; 2002 Feb; 87(2):946-53. PubMed ID: 11826059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of tonic locus ceruleus output on sensory-evoked responses of ventral posterior medial thalamic and barrel field cortical neurons in the awake rat.
    Devilbiss DM; Waterhouse BD
    J Neurosci; 2004 Dec; 24(48):10773-85. PubMed ID: 15574728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional topography of corticothalamic feedback enhances thalamic spatial response tuning in the somatosensory whisker/barrel system.
    Temereanca S; Simons DJ
    Neuron; 2004 Feb; 41(4):639-51. PubMed ID: 14980211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of thalamocortical sensory suppression during arousal: focusing sensory inputs in neocortex.
    Castro-Alamancos MA
    J Neurosci; 2002 Nov; 22(22):9651-5. PubMed ID: 12427819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response transformation and receptive-field synthesis in the lemniscal trigeminothalamic circuit.
    Minnery BS; Bruno RM; Simons DJ
    J Neurophysiol; 2003 Sep; 90(3):1556-70. PubMed ID: 12724362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition suppresses transmission of tonic vibrissa-evoked activity in the rat ventrobasal thalamus.
    Hartings JA; Simons DJ
    J Neurosci; 2000 Oct; 20(19):RC100. PubMed ID: 11000200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks.
    Debay D; Wolfart J; Le Franc Y; Le Masson G; Bal T
    J Physiol Paris; 2004; 98(4-6):540-58. PubMed ID: 16289755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging views of corticothalamic function.
    Briggs F; Usrey WM
    Curr Opin Neurobiol; 2008 Aug; 18(4):403-7. PubMed ID: 18805486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of periodic whisker deflections by neurons in the ventroposterior medial and thalamic reticular nuclei.
    Hartings JA; Temereanca S; Simons DJ
    J Neurophysiol; 2003 Nov; 90(5):3087-94. PubMed ID: 14615426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.