BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 16625116)

  • 1. Effects of partial ventilatory support modalities on respiratory function in severe hypoxemic lung injury.
    Henzler D; Pelosi P; Bensberg R; Dembinski R; Quintel M; Pielen V; Rossaint R; Kuhlen R
    Crit Care Med; 2006 Jun; 34(6):1738-45. PubMed ID: 16625116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher levels of spontaneous breathing reduce lung injury in experimental moderate acute respiratory distress syndrome.
    Carvalho NC; Güldner A; Beda A; Rentzsch I; Uhlig C; Dittrich S; Spieth PM; Wiedemann B; Kasper M; Koch T; Richter T; Rocco PR; Pelosi P; de Abreu MG
    Crit Care Med; 2014 Nov; 42(11):e702-15. PubMed ID: 25162475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ventilation with biphasic positive airway pressure in experimental lung injury. Influence of transpulmonary pressure on gas exchange and haemodynamics.
    Henzler D; Dembinski R; Bensberg R; Hochhausen N; Rossaint R; Kuhlen R
    Intensive Care Med; 2004 May; 30(5):935-43. PubMed ID: 14985965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure support ventilation and biphasic positive airway pressure improve oxygenation by redistribution of pulmonary blood flow.
    Carvalho AR; Spieth PM; Pelosi P; Beda A; Lopes AJ; Neykova B; Heller AR; Koch T; Gama de Abreu M
    Anesth Analg; 2009 Sep; 109(3):856-65. PubMed ID: 19690258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chest wall disruption with and without acute lung injury: effects of continuous positive airway pressure therapy on ventilation and perfusion relationships.
    Schweiger JW; Downs JB; Smith RA
    Crit Care Med; 2003 Sep; 31(9):2364-70. PubMed ID: 14501968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous breathing with biphasic positive airway pressure attenuates lung injury in hydrochloric acid-induced acute respiratory distress syndrome.
    Xia J; Zhang H; Sun B; Yang R; He H; Zhan Q
    Anesthesiology; 2014 Jun; 120(6):1441-9. PubMed ID: 24722174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury.
    Varpula T; Jousela I; Niemi R; Takkunen O; Pettilä V
    Acta Anaesthesiol Scand; 2003 May; 47(5):516-24. PubMed ID: 12699507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury.
    Güldner A; Braune A; Carvalho N; Beda A; Zeidler S; Wiedemann B; Wunderlich G; Andreeff M; Uhlig C; Spieth PM; Koch T; Pelosi P; Kotzerke J; de Abreu MG
    Anesthesiology; 2014 Mar; 120(3):673-82. PubMed ID: 24406799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional lung aeration and ventilation during pressure support and biphasic positive airway pressure ventilation in experimental lung injury.
    Gama de Abreu M; Cuevas M; Spieth PM; Carvalho AR; Hietschold V; Stroszczynski C; Wiedemann B; Koch T; Pelosi P; Koch E
    Crit Care; 2010; 14(2):R34. PubMed ID: 20233399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventilatory support by continuous positive airway pressure breathing improves gas exchange as compared with partial ventilatory support with airway pressure release ventilation.
    Neumann P; Hedenstierna G
    Anesth Analg; 2001 Apr; 92(4):950-8. PubMed ID: 11273933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of regional lung aeration and perfusion during conventional and noisy pressure support ventilation in experimental lung injury.
    Carvalho AR; Spieth PM; Güldner A; Cuevas M; Carvalho NC; Beda A; Spieth S; Stroczynski C; Wiedemann B; Koch T; Pelosi P; de Abreu MG
    J Appl Physiol (1985); 2011 Apr; 110(4):1083-92. PubMed ID: 21270348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Respiratory Drive and Effort in Extracorporeal Membrane Oxygenation Patients Recovering from Severe Acute Respiratory Distress Syndrome.
    Mauri T; Grasselli G; Suriano G; Eronia N; Spadaro S; Turrini C; Patroniti N; Bellani G; Pesenti A
    Anesthesiology; 2016 Jul; 125(1):159-67. PubMed ID: 26999639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term cardiorespiratory effects of proportional assist and pressure-support ventilation in patients with acute lung injury/acute respiratory distress syndrome.
    Kondili E; Xirouchaki N; Vaporidi K; Klimathianaki M; Georgopoulos D
    Anesthesiology; 2006 Oct; 105(4):703-8. PubMed ID: 17006068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome.
    Smith KM; Mrozek JD; Simonton SC; Bing DR; Meyers PA; Connett JE; Mammel MC
    Crit Care Med; 1997 Nov; 25(11):1888-97. PubMed ID: 9366775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome.
    Putensen C; Mutz NJ; Putensen-Himmer G; Zinserling J
    Am J Respir Crit Care Med; 1999 Apr; 159(4 Pt 1):1241-8. PubMed ID: 10194172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support.
    Neumann P; Wrigge H; Zinserling J; Hinz J; Maripuu E; Andersson LG; Putensen C; Hedenstierna G
    Crit Care Med; 2005 May; 33(5):1090-5. PubMed ID: 15891341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure.
    Yoshida T; Roldan R; Beraldo MA; Torsani V; Gomes S; De Santis RR; Costa EL; Tucci MR; Lima RG; Kavanagh BP; Amato MB
    Crit Care Med; 2016 Aug; 44(8):e678-88. PubMed ID: 27002273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of partial liquid ventilation in improving acute lung injury induced by intratracheal acidified infant formula: determination of optimal dose and positive end-expiratory pressure level.
    Mikawa K; Nishina K; Takao Y; Obara H
    Crit Care Med; 2004 Jan; 32(1):209-16. PubMed ID: 14707581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental blunt chest trauma--cardiorespiratory effects of different mechanical ventilation strategies with high positive end-expiratory pressure: a randomized controlled study.
    Schreiter D; Carvalho NC; Katscher S; Mende L; Reske AP; Spieth PM; Carvalho AR; Beda A; Lachmann B; Amato MB; Wrigge H; Reske AW
    BMC Anesthesiol; 2016 Jan; 16():3. PubMed ID: 26757894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologic effects of noninvasive ventilation during acute lung injury.
    L'Her E; Deye N; Lellouche F; Taille S; Demoule A; Fraticelli A; Mancebo J; Brochard L
    Am J Respir Crit Care Med; 2005 Nov; 172(9):1112-8. PubMed ID: 16081548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.