These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

850 related articles for article (PubMed ID: 16625188)

  • 21. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains.
    Prodromou C; Panaretou B; Chohan S; Siligardi G; O'Brien R; Ladbury JE; Roe SM; Piper PW; Pearl LH
    EMBO J; 2000 Aug; 19(16):4383-92. PubMed ID: 10944121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop.
    Schmid AB; Lagleder S; Gräwert MA; Röhl A; Hagn F; Wandinger SK; Cox MB; Demmer O; Richter K; Groll M; Kessler H; Buchner J
    EMBO J; 2012 Mar; 31(6):1506-17. PubMed ID: 22227520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large Rotation of the N-terminal Domain of Hsp90 Is Important for Interaction with Some but Not All Client Proteins.
    Daturpalli S; Knieß RA; Lee CT; Mayer MP
    J Mol Biol; 2017 May; 429(9):1406-1423. PubMed ID: 28363677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of the conformational dynamics of the molecular chaperone Hsp90.
    Riedl S; Bilgen E; Agam G; Hirvonen V; Jussupow A; Tippl F; Riedl M; Maier A; Becker CFW; Kaila VRI; Lamb DC; Buchner J
    Nat Commun; 2024 Oct; 15(1):8627. PubMed ID: 39366960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.
    Blacklock K; Verkhivker GM
    PLoS One; 2014; 9(1):e86547. PubMed ID: 24466147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.
    Obermann WM; Sondermann H; Russo AA; Pavletich NP; Hartl FU
    J Cell Biol; 1998 Nov; 143(4):901-10. PubMed ID: 9817749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of ATP and p23 on the conformation of hsp90.
    Sullivan WP; Owen BA; Toft DO
    J Biol Chem; 2002 Nov; 277(48):45942-8. PubMed ID: 12324468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23.
    Young JC; Hartl FU
    EMBO J; 2000 Nov; 19(21):5930-40. PubMed ID: 11060043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Mark Roe S; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Feb; 23(3):511-9. PubMed ID: 14739935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.
    Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allosteric Regulation Points Control the Conformational Dynamics of the Molecular Chaperone Hsp90.
    Rehn A; Moroni E; Zierer BK; Tippel F; Morra G; John C; Richter K; Colombo G; Buchner J
    J Mol Biol; 2016 Nov; 428(22):4559-4571. PubMed ID: 27663270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The 'active life' of Hsp90 complexes.
    Prodromou C
    Biochim Biophys Acta; 2012 Mar; 1823(3):614-23. PubMed ID: 21840346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of the Hsp90 chaperone cycle by a stringent client protein.
    Lorenz OR; Freiburger L; Rutz DA; Krause M; Zierer BK; Alvira S; Cuéllar J; Valpuesta JM; Madl T; Sattler M; Buchner J
    Mol Cell; 2014 Mar; 53(6):941-53. PubMed ID: 24613341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes.
    Morgan RM; Pal M; Roe SM; Pearl LH; Prodromou C
    Acta Crystallogr D Biol Crystallogr; 2015 May; 71(Pt 5):1197-206. PubMed ID: 25945584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity.
    Forafonov F; Toogun OA; Grad I; Suslova E; Freeman BC; Picard D
    Mol Cell Biol; 2008 May; 28(10):3446-56. PubMed ID: 18362168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A chemical compound inhibiting the Aha1-Hsp90 chaperone complex.
    Stiegler SC; Rübbelke M; Korotkov VS; Weiwad M; John C; Fischer G; Sieber SA; Sattler M; Buchner J
    J Biol Chem; 2017 Oct; 292(41):17073-17083. PubMed ID: 28851842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range.
    Girstmair H; Tippel F; Lopez A; Tych K; Stein F; Haberkant P; Schmid PWN; Helm D; Rief M; Sattler M; Buchner J
    Nat Commun; 2019 Aug; 10(1):3626. PubMed ID: 31399574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Structure of the R2TP Complex Defines a Platform for Recruiting Diverse Client Proteins to the HSP90 Molecular Chaperone System.
    Rivera-Calzada A; Pal M; Muñoz-Hernández H; Luque-Ortega JR; Gil-Carton D; Degliesposti G; Skehel JM; Prodromou C; Pearl LH; Llorca O
    Structure; 2017 Jul; 25(7):1145-1152.e4. PubMed ID: 28648606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis.
    Mickler M; Hessling M; Ratzke C; Buchner J; Hugel T
    Nat Struct Mol Biol; 2009 Mar; 16(3):281-6. PubMed ID: 19234469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.