These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 16625676)
1. Atom-molecule interactions on transition metal surfaces: a DFT Study of CO and several atoms on Rh(100), Pd(100) and Ir(100). Nieskens DL; Curulla-Ferré D; Niemantsverdriet JW Chemphyschem; 2006 May; 7(5):1075-80. PubMed ID: 16625676 [TBL] [Abstract][Full Text] [Related]
2. The influence of promoters and poisons on carbon monoxide adsorption on Rh(100): a DFT study. Nieskens DL; Curulla Ferré D; Niemantsverdriet JW Chemphyschem; 2005 Jul; 6(7):1293-8. PubMed ID: 15952222 [TBL] [Abstract][Full Text] [Related]
3. Adsorbed CO on group 10 metal fragments: a DFT study. Giuffrida S; Barone G; Duca D J Chem Inf Model; 2009 May; 49(5):1223-33. PubMed ID: 19405525 [TBL] [Abstract][Full Text] [Related]
4. Comparative study of water dissociation on Rh(111) and Ni(111) studied with first principles calculations. Pozzo M; Carlini G; Rosei R; Alfè D J Chem Phys; 2007 Apr; 126(16):164706. PubMed ID: 17477623 [TBL] [Abstract][Full Text] [Related]
5. Influence of the hydroxylation of gamma-Al2O3 surfaces on the stability and diffusion of single Pd atoms: a DFT study. Valero MC; Raybaud P; Sautet P J Phys Chem B; 2006 Feb; 110(4):1759-67. PubMed ID: 16471743 [TBL] [Abstract][Full Text] [Related]
6. On the structure and bonding of first row transition metal ozone carbonyl hydrides. Venter GA; Raubenheimer HG; Dillen J J Phys Chem A; 2007 Aug; 111(33):8193-201. PubMed ID: 17661454 [TBL] [Abstract][Full Text] [Related]
7. Importance of electronegativity differences and surface structure in molecular dissociation reactions at transition metal surfaces. Crawford P; Hu P J Phys Chem B; 2006 Dec; 110(49):24929-35. PubMed ID: 17149914 [TBL] [Abstract][Full Text] [Related]
8. Single d-metal atoms on F(s) and F(s+) defects of MgO(001): a theoretical study across the periodic table. Neyman KM; Inntam C; Matveev AV; Nasluzov VA; Rösch N J Am Chem Soc; 2005 Aug; 127(33):11652-60. PubMed ID: 16104741 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of transition-metal atoms on boron nitride nanotube: a density-functional study. Wu X; Zeng XC J Chem Phys; 2006 Jul; 125(4):44711. PubMed ID: 16942178 [TBL] [Abstract][Full Text] [Related]
10. Associative versus dissociative binding of CO to 4d transition metal trimers: A density functional study. Addicoat MA; Buntine MA; Yates B; Metha GF J Comput Chem; 2008 Jul; 29(9):1497-506. PubMed ID: 18393258 [TBL] [Abstract][Full Text] [Related]
11. Interaction of porphine and its metal complexes with C60 fullerene: a DFT study. Basiuk VA J Phys Chem A; 2005 Apr; 109(16):3704-10. PubMed ID: 16839037 [TBL] [Abstract][Full Text] [Related]
12. Density functional theory study of CHx (x=1-3) adsorption on clean and CO precovered Rh(111) surfaces. Yang MM; Bao XH; Li WX J Chem Phys; 2007 Jul; 127(2):024705. PubMed ID: 17640143 [TBL] [Abstract][Full Text] [Related]
13. Structure sensitivity of methanol electrooxidation on transition metals. Ferrin P; Mavrikakis M J Am Chem Soc; 2009 Oct; 131(40):14381-9. PubMed ID: 19754206 [TBL] [Abstract][Full Text] [Related]
14. Reactivity of the non stoichiometric Ni3O4 phase supported at the Pd(100) surface: interaction with Au and other transition metal atoms. Ferrari AM; Pisani C Phys Chem Chem Phys; 2008 Mar; 10(10):1463-70. PubMed ID: 18309404 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of naphthalene and quinoline on Pt, Pd and Rh: a DFT study. Santarossa G; Iannuzzi M; Vargas A; Baiker A Chemphyschem; 2008 Feb; 9(3):401-13. PubMed ID: 18236490 [TBL] [Abstract][Full Text] [Related]
16. Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces. Miller SD; Inoğlu N; Kitchin JR J Chem Phys; 2011 Mar; 134(10):104709. PubMed ID: 21405186 [TBL] [Abstract][Full Text] [Related]
17. Adsorbate-adsorbate interactions and chemisorption at different coverages studied by accurate ab initio calculations: CO on transition metal surfaces. Mason SE; Grinberg I; Rappe AM J Phys Chem B; 2006 Mar; 110(8):3816-22. PubMed ID: 16494441 [TBL] [Abstract][Full Text] [Related]
18. On the mechanisms of degenerate ligand exchange in [M(CH(3))](+)/CH(4) Couples (M=Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt) as explored by mass spectrometric and computational studies: oxidative addition/reductive elimination versus sigma-complex-assisted metathesis. Armélin M; Schlangen M; Schwarz H Chemistry; 2008; 14(17):5229-36. PubMed ID: 18435447 [TBL] [Abstract][Full Text] [Related]
19. A density functional study of NO adsorption and decomposition on Ni(211) and Pd(211) surfaces. Orita H; Nakamura I; Fujitani T J Chem Phys; 2005 Jan; 122(1):14703. PubMed ID: 15638687 [TBL] [Abstract][Full Text] [Related]
20. Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis. Ge Q; Neurock M J Phys Chem B; 2006 Aug; 110(31):15368-80. PubMed ID: 16884257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]