These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16625909)

  • 21. Homotopic, non-local sparse reconstruction of optical coherence tomography imagery.
    Liu C; Wong A; Bizheva K; Fieguth P; Bie H
    Opt Express; 2012 Apr; 20(9):10200-11. PubMed ID: 22535111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal-to-noise ratio study of full-field fourier-domain optical coherence tomography.
    Blazkiewicz P; Gourlay M; Tucker JR; Rakic AD; Zvyagin AV
    Appl Opt; 2005 Dec; 44(36):7722-9. PubMed ID: 16381518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images.
    Marks D; Carney PS; Boppart SA
    J Biomed Opt; 2004; 9(6):1281-7. PubMed ID: 15568949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography.
    Dennis T; Dyer SD; Dienstfrey A; Singh G; Rice P
    J Biomed Opt; 2008; 13(2):024004. PubMed ID: 18465967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries.
    Amaechi BT; Podoleanu A; Higham SM; Jackson DA
    J Biomed Opt; 2003 Oct; 8(4):642-7. PubMed ID: 14563202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry.
    Amir W; Planchon TA; Durfee CG; Squier JA; Gabolde P; Trebino R; Müller M
    Opt Lett; 2006 Oct; 31(19):2927-9. PubMed ID: 16969425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter.
    Adler DC; Ko TH; Fujimoto JG
    Opt Lett; 2004 Dec; 29(24):2878-80. PubMed ID: 15645810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Full-field swept-source phase microscopy.
    Sarunic MV; Weinberg S; Izatt JA
    Opt Lett; 2006 May; 31(10):1462-4. PubMed ID: 16642139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical coherence tomography axial resolution improvement by step-frequency encoding.
    Bousi E; Charalambous I; Pitris C
    Opt Express; 2010 May; 18(11):11877-90. PubMed ID: 20589049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Wojtkowski M; Fujimoto JG; Duker JS
    Opt Lett; 2006 Aug; 31(15):2308-10. PubMed ID: 16832468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging.
    Joo C; Akkin T; Cense B; Park BH; de Boer JF
    Opt Lett; 2005 Aug; 30(16):2131-3. PubMed ID: 16127933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dispersion compensation in Fourier domain optical coherence tomography.
    Al-Saeed TA; Shalaby MY; Khalil DA
    Appl Opt; 2014 Oct; 53(29):6643-53. PubMed ID: 25322365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures.
    Thrane L; Frosz MH; Jørgensen TM; Tycho A; Yura HT; Andersen PE
    Opt Lett; 2004 Jul; 29(14):1641-3. PubMed ID: 15309845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography.
    Liu B; Brezinski ME
    J Biomed Opt; 2007; 12(4):044007. PubMed ID: 17867811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extended focus depth for Fourier domain optical coherence microscopy.
    Leitgeb RA; Villiger M; Bachmann AH; Steinmann L; Lasser T
    Opt Lett; 2006 Aug; 31(16):2450-2. PubMed ID: 16880852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherence-gated wave-front sensing in strongly scattering samples.
    Feierabend M; Rückel M; Denk W
    Opt Lett; 2004 Oct; 29(19):2255-7. PubMed ID: 15524372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography.
    Yasuno Y; Makita S; Endo T; Aoki G; Itoh M; Yatagai T
    Appl Opt; 2006 Mar; 45(8):1861-5. PubMed ID: 16572705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography.
    Wang RK; Ma Z
    Phys Med Biol; 2006 Jun; 51(12):3231-9. PubMed ID: 16757873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dark-field optical coherence microscopy.
    Villiger M; Pache C; Lasser T
    Opt Lett; 2010 Oct; 35(20):3489-91. PubMed ID: 20967109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography.
    Faber DJ; Mik EG; Aalders MC; van Leeuwen TG
    Opt Lett; 2005 May; 30(9):1015-7. PubMed ID: 15906988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.