These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 16626210)

  • 1. Model for dynamics of inhomogeneous and bulk fluids.
    Krishnan SH; Ayappa KG
    J Chem Phys; 2006 Apr; 124(14):144503. PubMed ID: 16626210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation and short time dynamics of bulk liquids and fluids confined in spherical cavities and slit pores.
    Krishnan SH; Ayappa KG
    J Phys Chem B; 2005 Dec; 109(49):23237-49. PubMed ID: 16375288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling velocity autocorrelation functions for confined fluids using gamma distributions.
    Krishnan SH; Ayappa KG
    J Chem Phys; 2004 Aug; 121(7):3197-205. PubMed ID: 15291631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using gamma distributions to predict self-diffusivities and density of states of fluids confined in carbon nanotubes.
    Choudhary V; Ayappa KG
    Phys Chem Chem Phys; 2007 Apr; 9(16):1952-61. PubMed ID: 17431523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between self-diffusivity, packing fraction, and excess entropy in simple bulk and confined fluids.
    Mittal J; Errington JR; Truskett TM
    J Phys Chem B; 2007 Aug; 111(34):10054-63. PubMed ID: 17629320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric response of polar liquids in narrow slit pores.
    Froltsov VA; Klapp SH
    J Chem Phys; 2007 Mar; 126(11):114703. PubMed ID: 17381224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic dynamics of dipolar liquids in narrow slit pores.
    Froltsov VA; Klapp SH
    J Chem Phys; 2006 Apr; 124(13):134701. PubMed ID: 16613462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory of inhomogeneous liquids. II. A fundamental measure approach.
    Lutsko JF
    J Chem Phys; 2008 May; 128(18):184711. PubMed ID: 18532840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation force, structure and thermodynamics of fluids confined in geometrically rough pores.
    Ghatak C; Ayappa KG
    J Chem Phys; 2004 May; 120(20):9703-14. PubMed ID: 15267985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined quasi-continuum/Langevin equation approach to study the self-diffusion dynamics of confined fluids.
    Sanghi T; Aluru NR
    J Chem Phys; 2013 Mar; 138(12):124109. PubMed ID: 23556711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces.
    Yu YX
    J Chem Phys; 2009 Jul; 131(2):024704. PubMed ID: 19604007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does confining the hard-sphere fluid between hard walls change its average properties?
    Mittal J; Errington JR; Truskett TM
    J Chem Phys; 2007 Jun; 126(24):244708. PubMed ID: 17614578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of phase behavior of nanoconfined Lennard-Jones fluids with density functional theory based on the first-order mean spherical approximation.
    Mi J; Tang Y; Zhong C; Li YG
    J Chem Phys; 2006 Apr; 124(14):144709. PubMed ID: 16626233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tractable molecular theory of transport of Lennard-Jones fluids in nanopores.
    Bhatia SK; Jepps O; Nicholson D
    J Chem Phys; 2004 Mar; 120(9):4472-85. PubMed ID: 15268615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Local and Average Particle Diffusivities of Inhomogeneous Fluids Depend on Microscopic Dynamics.
    Bollinger JA; Jain A; Truskett TM
    J Phys Chem B; 2015 Jul; 119(29):9103-13. PubMed ID: 25350488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport properties of nitrogen in single walled carbon nanotubes.
    Sokhan VP; Nicholson D; Quirke N
    J Chem Phys; 2004 Feb; 120(8):3855-63. PubMed ID: 15268551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory study on the structure and capillary phase transition of a polymer melt in a slitlike pore: effect of attraction.
    Yu YX; Gao GH; Wang XL
    J Phys Chem B; 2006 Jul; 110(29):14418-25. PubMed ID: 16854151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagrammatic formulation of the kinetic theory of fluctuations in equilibrium classical fluids. V. The short time approximation for the memory function.
    Ranganathan M; Andersen HC
    J Phys Chem B; 2005 Nov; 109(45):21437-44. PubMed ID: 16853781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New free energy density functional and application to core-softened fluid.
    Zhou S
    J Chem Phys; 2010 May; 132(19):194112. PubMed ID: 20499956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.