These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 16626213)

  • 1. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting temperature of ice Ih calculated from coexisting solid-liquid phases.
    Wang J; Yoo S; Bai J; Morris JR; Zeng XC
    J Chem Phys; 2005 Jul; 123(3):36101. PubMed ID: 16080767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between the melting temperature and the temperature of maximum density for the most common models of water.
    Vega C; Abascal JL
    J Chem Phys; 2005 Oct; 123(14):144504. PubMed ID: 16238404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the three-phase coexistence line in methane hydrates using computer simulations.
    Conde MM; Vega C
    J Chem Phys; 2010 Aug; 133(6):064507. PubMed ID: 20707575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of ices at 0 K: a test of water models.
    Aragones JL; Noya EG; Abascal JL; Vega C
    J Chem Phys; 2007 Oct; 127(15):154518. PubMed ID: 17949184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y; Tanaka H; Gao G; Zeng XC
    J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy of solvation of simple ions: molecular-dynamics study of solvation of Cl- and Na+ in the ice/water interface.
    Smith EJ; Bryk T; Haymet AD
    J Chem Phys; 2005 Jul; 123(3):34706. PubMed ID: 16080754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of two new solid phases of water: Ice XIII and ice XIV.
    Martin-Conde M; MacDowell LG; Vega C
    J Chem Phys; 2006 Sep; 125(11):116101. PubMed ID: 16999507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C; de Miguel E
    J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL; Conde MM; Noya EG; Vega C
    Phys Chem Chem Phys; 2009 Jan; 11(3):543-55. PubMed ID: 19283272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of TIP5P and TIP4P/ice potentials.
    Picaud S
    J Chem Phys; 2006 Nov; 125(17):174712. PubMed ID: 17100466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation.
    Conde MM; Vega C; Patrykiejew A
    J Chem Phys; 2008 Jul; 129(1):014702. PubMed ID: 18624491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A potential model for the study of ices and amorphous water: TIP4P/Ice.
    Abascal JL; Sanz E; García Fernández R; Vega C
    J Chem Phys; 2005 Jun; 122(23):234511. PubMed ID: 16008466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum effects in liquid water and ice: model dependence.
    Hernández de la Peña L; Kusalik PG
    J Chem Phys; 2006 Aug; 125(5):054512. PubMed ID: 16942231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal growth investigations of ice∕water interfaces from molecular dynamics simulations: Profile functions and average properties.
    Razul MS; Kusalik PG
    J Chem Phys; 2011 Jan; 134(1):014710. PubMed ID: 21219023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the phase diagram of water from direct coexistence simulations: the phase diagram of the TIP4P/2005 model revisited.
    Conde MM; Gonzalez MA; Abascal JL; Vega C
    J Chem Phys; 2013 Oct; 139(15):154505. PubMed ID: 24160525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
    Ramírez R; Herrero CP
    J Chem Phys; 2010 Oct; 133(14):144511. PubMed ID: 20950021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric constant of ices and water: a lesson about water interactions.
    Aragones JL; MacDowell LG; Vega C
    J Phys Chem A; 2011 Jun; 115(23):5745-58. PubMed ID: 20866096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.