These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16626287)

  • 1. The relationship between higher-order chromatin structure and transcription.
    Gilbert N; Bickmore WA
    Biochem Soc Symp; 2006; (73):59-66. PubMed ID: 16626287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure.
    Nishino Y; Eltsov M; Joti Y; Ito K; Takata H; Takahashi Y; Hihara S; Frangakis AS; Imamoto N; Ishikawa T; Maeshima K
    EMBO J; 2012 Apr; 31(7):1644-53. PubMed ID: 22343941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers.
    Gilbert N; Boyle S; Fiegler H; Woodfine K; Carter NP; Bickmore WA
    Cell; 2004 Sep; 118(5):555-66. PubMed ID: 15339661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin conformation signatures: ideal human disease biomarkers?
    Crutchley JL; Wang XQ; Ferraiuolo MA; Dostie J
    Biomark Med; 2010 Aug; 4(4):611-29. PubMed ID: 20701449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between chromatin structure and transcriptional activity in mammalian genomes.
    Gilbert N; Ramsahoye B
    Brief Funct Genomic Proteomic; 2005 Jul; 4(2):129-42. PubMed ID: 16102269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mini review: form and function in the human interphase chromosome.
    Chevret E; Volpi EV; Sheer D
    Cytogenet Cell Genet; 2000; 90(1-2):13-21. PubMed ID: 11060439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation and comparison of methods for recapitulation of 3D spatial chromatin structures.
    Park J; Lin S
    Brief Bioinform; 2019 Jul; 20(4):1205-1214. PubMed ID: 29091999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH.
    Mahy NL; Perry PE; Bickmore WA
    J Cell Biol; 2002 Dec; 159(5):753-63. PubMed ID: 12473685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing long-range interconnected hubs in human chromatin interaction data using graph theory.
    Boulos RE; Arneodo A; Jensen P; Audit B
    Phys Rev Lett; 2013 Sep; 111(11):118102. PubMed ID: 24074120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome organization and gene control: it is difficult to see the picture when you are inside the frame.
    Verschure PJ
    J Cell Biochem; 2006 Sep; 99(1):23-34. PubMed ID: 16795053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermediate structure between chromatin fibers and chromosome revealed by mechanical stretching and SPM measurement.
    Ikeda K; Mizutani T; Hoshi O; Ushiki T; Haga H; Kawabata K
    Biochem Biophys Res Commun; 2010 Sep; 400(1):181-6. PubMed ID: 20719238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial relationship between transcription sites and chromosome territories.
    Verschure PJ; van Der Kraan I; Manders EM; van Driel R
    J Cell Biol; 1999 Oct; 147(1):13-24. PubMed ID: 10508851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What's in the "fold"?
    Mehra P; Kalani A
    Life Sci; 2018 Oct; 211():118-125. PubMed ID: 30213728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-genome views of chromatin structure.
    Lodén M; van Steensel B
    Chromosome Res; 2005; 13(3):289-98. PubMed ID: 15868422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reorganization of chromosome architecture in replicative cellular senescence.
    Criscione SW; De Cecco M; Siranosian B; Zhang Y; Kreiling JA; Sedivy JM; Neretti N
    Sci Adv; 2016 Feb; 2(2):e1500882. PubMed ID: 26989773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome conformation elucidates regulatory relationships in developing human brain.
    Won H; de la Torre-Ubieta L; Stein JL; Parikshak NN; Huang J; Opland CK; Gandal MJ; Sutton GJ; Hormozdiari F; Lu D; Lee C; Eskin E; Voineagu I; Ernst J; Geschwind DH
    Nature; 2016 Oct; 538(7626):523-527. PubMed ID: 27760116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic approaches to studying CFTR transcriptional regulation.
    Ott CJ; Harris A
    Methods Mol Biol; 2011; 741():193-209. PubMed ID: 21594786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of active chromatin: higher-order folding of transcriptionally active chromatin in control and hypothyroid rat liver.
    Tikoo K; Hamid QA; Ali Z
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):289-96. PubMed ID: 9078275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.