These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 16626631)
1. AFM study of interaction forces in supported planar DPPC bilayers in the presence of general anesthetic halothane. Leonenko Z; Finot E; Cramb D Biochim Biophys Acta; 2006 Apr; 1758(4):487-92. PubMed ID: 16626631 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulation study of the effect of halothane on mixed DPPC/DPPE phospholipid membranes. Arvayo-Zatarain JA; Favela-Rosales F; Contreras-Aburto C; Urrutia-Bañuelos E; Maldonado A J Mol Model; 2018 Dec; 25(1):4. PubMed ID: 30554281 [TBL] [Abstract][Full Text] [Related]
3. Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations. Koubi L; Tarek M; Klein ML; Scharf D Biophys J; 2000 Feb; 78(2):800-11. PubMed ID: 10653792 [TBL] [Abstract][Full Text] [Related]
4. Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers. Sheikh KH; Giordani C; Kilpatrick JI; Jarvis SP Langmuir; 2011 Apr; 27(7):3749-53. PubMed ID: 21370902 [TBL] [Abstract][Full Text] [Related]
5. Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Leonenko ZV; Finot E; Ma H; Dahms TE; Cramb DT Biophys J; 2004 Jun; 86(6):3783-93. PubMed ID: 15189874 [TBL] [Abstract][Full Text] [Related]
6. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). Wu HL; Tong Y; Peng Q; Li N; Ye S Phys Chem Chem Phys; 2016 Jan; 18(3):1411-21. PubMed ID: 26461203 [TBL] [Abstract][Full Text] [Related]
7. Effects of anesthetics on the structure of a phospholipid bilayer: molecular dynamics investigation of halothane in the hydrated liquid crystal phase of dipalmitoylphosphatidylcholine. Tu K; Tarek M; Klein ML; Scharf D Biophys J; 1998 Nov; 75(5):2123-34. PubMed ID: 9788906 [TBL] [Abstract][Full Text] [Related]
8. Enzyme-catalyzed hydrolysis of the supported phospholipid bilayers studied by atomic force microscopy. Wu H; Yu L; Tong Y; Ge A; Yau S; Osawa M; Ye S Biochim Biophys Acta; 2013 Feb; 1828(2):642-51. PubMed ID: 22995243 [TBL] [Abstract][Full Text] [Related]
9. Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles. Vemparala S; Saiz L; Eckenhoff RG; Klein ML Biophys J; 2006 Oct; 91(8):2815-25. PubMed ID: 16877515 [TBL] [Abstract][Full Text] [Related]
10. Anesthetic molecules embedded in a lipid membrane: a computer simulation study. Darvas M; Hoang PN; Picaud S; Sega M; Jedlovszky P Phys Chem Chem Phys; 2012 Oct; 14(37):12956-69. PubMed ID: 22903224 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of degradation of dipalmitoylphosphatidylcholine (DPPC) bilayers as a result of vipoxin phospholipase A2 activity: an atomic force microscopy (AFM) approach. Balashev K; Atanasov V; Mitewa M; Petrova S; Bjørnholm T Biochim Biophys Acta; 2011 Jan; 1808(1):191-8. PubMed ID: 20959114 [TBL] [Abstract][Full Text] [Related]
12. The growth of bilayer defects and the induction of interdigitated domains in the lipid-loss process of supported phospholipid bilayers. Fang Y; Yang J Biochim Biophys Acta; 1997 Mar; 1324(2):309-19. PubMed ID: 9092717 [TBL] [Abstract][Full Text] [Related]
13. Interaction modes of long-chain fatty acids in dipalmitoylphosphatidylcholine bilayer membrane: contrast to mode of inhalation anesthetics. Nishimoto M; Hata T; Goto M; Tamai N; Kaneshina S; Matsuki H; Ueda I Chem Phys Lipids; 2009 Apr; 158(2):71-80. PubMed ID: 19428351 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of ubiquinone in supported lipid bilayers on ITO. Hoyo J; Guaus E; Oncins G; Torrent-Burgués J; Sanz F J Phys Chem B; 2013 Jun; 117(25):7498-506. PubMed ID: 23725098 [TBL] [Abstract][Full Text] [Related]
15. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid. Asakawa H; Fukuma T Nanotechnology; 2009 Jul; 20(26):264008. PubMed ID: 19509439 [TBL] [Abstract][Full Text] [Related]
16. Concentration effects of volatile anesthetics on the properties of model membranes: a coarse-grain approach. Pickholz M; Saiz L; Klein ML Biophys J; 2005 Mar; 88(3):1524-34. PubMed ID: 15613628 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous in situ total internal reflectance fluorescence/atomic force microscopy studies of DPPC/dPOPC microdomains in supported planar lipid bilayers. Shaw JE; Slade A; Yip CM J Am Chem Soc; 2003 Oct; 125(39):11838-9. PubMed ID: 14505404 [TBL] [Abstract][Full Text] [Related]
18. Atomic force microscopy of supported lipid bilayers. Mingeot-Leclercq MP; Deleu M; Brasseur R; Dufrêne YF Nat Protoc; 2008; 3(10):1654-9. PubMed ID: 18833202 [TBL] [Abstract][Full Text] [Related]
19. Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM. Andre G; Brasseur R; Dufrêne YF J Mol Recognit; 2007; 20(6):538-45. PubMed ID: 17891753 [TBL] [Abstract][Full Text] [Related]
20. Atomic force microscopy of supported planar membrane bilayers. Singh S; Keller DJ Biophys J; 1991 Dec; 60(6):1401-10. PubMed ID: 1777565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]