BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 16626782)

  • 1. Highly weathered mineral soils have highest transfer risk of radiocaesium contamination after a nuclear accident: A global soil-plant study.
    Vanheukelom M; Sweeck L; Almahayni T; De Bruyn M; Steegmans P; Fondu L; Van Gompel A; Van Hees M; Wannijn J; Smolders E
    Sci Total Environ; 2024 Jun; 945():173583. PubMed ID: 38851332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of soil type and drought stress on growth and cesium accumulation in Napier grass.
    Kang DJ; Tazoe H
    Environ Geochem Health; 2024 Jun; 46(7):235. PubMed ID: 38849625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation and correlation between water retention capacity and gas permeability of compacted loess overburden during wetting-drying cycles.
    Kong D; Wu T; Xu H; Jiang P; Zhou A; Lv Y
    Environ Res; 2024 Jul; 252(Pt 2):118895. PubMed ID: 38604483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tritium behavior in soil and mineral rock components used for plant cultivation.
    Portuphy MO; Katayama K; Asao K; Takeishi T; Akashi K
    Appl Radiat Isot; 2024 Aug; 210():111344. PubMed ID: 38739997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of K and bentonite additions on Cs-transfer to ryegrass.
    Vandenhove H; Cremers A; Smolders E; Van Hees M
    J Environ Radioact; 2005; 81(2-3):233-53. PubMed ID: 15795037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced irreversible fixation of cesium by wetting and drying cycles in soil.
    Park SM; Yang JS; Tsang DCW; Alessi DS; Baek K
    Environ Geochem Health; 2019 Feb; 41(1):149-157. PubMed ID: 30143907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.
    Uematsu S; Smolders E; Sweeck L; Wannijn J; Van Hees M; Vandenhove H
    Sci Total Environ; 2015 Aug; 524-525():148-56. PubMed ID: 25897723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 1: radiostrontium and radiocaesium.
    Gil-García C; Rigol A; Vidal M
    J Environ Radioact; 2009 Sep; 100(9):690-6. PubMed ID: 19036483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of radionuclide aging in soils from the Chernobyl and Mediterranean areas.
    Roig M; Vidal M; Rauret G; Rigol A
    J Environ Qual; 2007; 36(4):943-52. PubMed ID: 17526873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of clay content and wetting-and-drying on radiocaesium behaviour in a peat and a peaty podzol.
    Rosén K; Shand CA; Haak E; Cheshire MV
    Sci Total Environ; 2006 Sep; 368(2-3):795-803. PubMed ID: 16626782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer parameter values in temperate forest ecosystems: a review.
    Calmon P; Thiry Y; Zibold G; Rantavaara A; Fesenko S
    J Environ Radioact; 2009 Sep; 100(9):757-66. PubMed ID: 19100665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible role of organic matter in radiocaesium adsorption in soils.
    Staunton S; Dumat C; Zsolnay A
    J Environ Radioact; 2002; 58(2-3):163-73. PubMed ID: 11814164
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.