These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16627362)

  • 1. A computer-based method for determination of the cell-free layer width in microcirculation.
    Kim S; Kong RL; Popel AS; Intaglietta M; Johnson PC
    Microcirculation; 2006; 13(3):199-207. PubMed ID: 16627362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated method for cell-free layer width determination in small arterioles.
    Ong PK; Jain S; Namgung B; Woo YI; Sakai H; Lim D; Chun KJ; Kim S
    Physiol Meas; 2011 Mar; 32(3):N1-12. PubMed ID: 21252418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal variations in cell-free layer formation near bifurcations of small arterioles.
    Ong PK; Jain S; Kim S
    Microvasc Res; 2012 Mar; 83(2):118-25. PubMed ID: 22100561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles.
    Ong PK; Namgung B; Johnson PC; Kim S
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1870-8. PubMed ID: 20348228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization and Quantification of the Cell-free Layer in Arterioles of the Rat Cremaster Muscle.
    Ng YC; Fisher LK; Salim V; Kim S; Namgung B
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27805612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal variations of the cell-free layer width may enhance NO bioavailability in small arterioles: Effects of erythrocyte aggregation.
    Ong PK; Jain S; Kim S
    Microvasc Res; 2011 May; 81(3):303-12. PubMed ID: 21345341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and spatial variations of cell-free layer width in arterioles.
    Kim S; Kong RL; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1526-35. PubMed ID: 17526647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-free layer formation in small arterioles at pathological levels of erythrocyte aggregation.
    Ong PK; Jain S; Namgung B; Woo YI; Kim S
    Microcirculation; 2011 Oct; 18(7):541-51. PubMed ID: 21575094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time measurement of microvascular dimensions using digital cross-correlation image processing.
    Magers S; Faber JE
    J Vasc Res; 1992; 29(3):241-7. PubMed ID: 1504196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New method: the intravital videomicroscopic characteristics of the microcirculation of the urinary bladder in rats.
    Bajory Z; Hutter J; Krombach F; Messmer K
    Urol Res; 2002 Jul; 30(3):148-52. PubMed ID: 12111176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of erythrocyte aggregation on spatiotemporal variations in cell-free layer formation near on arteriolar bifurcation.
    Ong PK; Kim S
    Microcirculation; 2013 Jul; 20(5):440-53. PubMed ID: 23360227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microhemodynamic parameters quantification from intravital microscopy videos.
    Ortiz D; Briceño JC; Cabrales P
    Physiol Meas; 2014 Mar; 35(3):351-67. PubMed ID: 24480871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of uneven red cell influx on formation of cell-free layer in small venules.
    Namgung B; Kim S
    Microvasc Res; 2014 Mar; 92():19-24. PubMed ID: 24472285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, nonoccluding fluorescent beads, and computer-assisted image analysis.
    Rovainen CM; Woolsey TA; Blocher NC; Wang DB; Robinson OF
    J Cereb Blood Flow Metab; 1993 May; 13(3):359-71. PubMed ID: 7683023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules.
    Bishop JJ; Nance PR; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H113-20. PubMed ID: 12969894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved, computer-based method to automatically track internal and external diameter of isolated microvessels.
    Davis MJ
    Microcirculation; 2005 Jun; 12(4):361-72. PubMed ID: 16020082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of erythrocyte aggregation on velocity profiles in venules.
    Bishop JJ; Nance PR; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H222-36. PubMed ID: 11123237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of erythrocyte aggregation at normal human levels on functional capillary density in rat spinotrapezius muscle.
    Kim S; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H941-7. PubMed ID: 16183731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computerized method for determination of microvascular density.
    Rieder MJ; O'Drobinak DM; Greene AS
    Microvasc Res; 1995 Mar; 49(2):180-9. PubMed ID: 7603355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber optical spatial filter anemometry--intravital measurement of red blood flow velocity (RBCV) in the microcirculation.
    Hungerer S; Nolte D; Elstner B; Pröhl M; Messmer K
    Artif Cells Blood Substit Immobil Biotechnol; 2010 May; 38(3):119-28. PubMed ID: 20297922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.