These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16627681)

  • 1. Comparison of lung sound transducers using a bioacoustic transducer testing system.
    Kraman SS; Wodicka GR; Pressler GA; Pasterkamp H
    J Appl Physiol (1985); 2006 Aug; 101(2):469-76. PubMed ID: 16627681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, construction, and evaluation of a bioacoustic transducer testing (BATT) system for respiratory sounds.
    Kraman SS; Pressler GA; Pasterkamp H; Wodicka GR
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1711-5. PubMed ID: 16916109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of respiratory acoustic signals. Effect of microphone air cavity width, shape, and venting.
    Kraman SS; Wodicka GR; Oh Y; Pasterkamp H
    Chest; 1995 Oct; 108(4):1004-8. PubMed ID: 7555110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air-borne and tissue-borne sensitivities of bioacoustic sensors used on the skin surface.
    Zañartu M; Ho JC; Kraman SS; Pasterkamp H; Huber JE; Wodicka GR
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):443-51. PubMed ID: 19272887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of respiratory sounds at the external ear.
    Pressler GA; Mansfield JP; Pasterkamp H; Wodicka GR
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2089-96. PubMed ID: 15605855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system.
    Corbishley P; Rodríguez-Villegas E
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):196-204. PubMed ID: 18232362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for measuring violin sound radiation based on bowed glissandi and its application to sound synthesis.
    Perez Carrillo A; Bonada J; Patynen J; Valimaki V
    J Acoust Soc Am; 2011 Aug; 130(2):1020-9. PubMed ID: 21877814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of a novel microphone-based mechanomyography sensor with cylindrical and conical acoustic chambers.
    Posatskiy AO; Chau T
    Med Eng Phys; 2012 Oct; 34(8):1184-90. PubMed ID: 22227245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of diameter, length, and circuit pressure on sound conductance through endotracheal tubes.
    Räsänen JO; Rosenhouse G; Gavriely N
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1255-64. PubMed ID: 16830930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic temperature measurement in a rocket noise field.
    Giraud JH; Gee KL; Ellsworth JE
    J Acoust Soc Am; 2010 May; 127(5):EL179-84. PubMed ID: 21117711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a Body-Conducted Sound Sensor for Respiratory Sound Monitoring and a Comparison with Several Sensors.
    Joyashiki T; Wada C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ calibration of atmospheric-infrasound sensors including the effects of wind-noise-reduction pipe systems.
    Gabrielson TB
    J Acoust Soc Am; 2011 Sep; 130(3):1154-63. PubMed ID: 21895058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lung sound spectra at standardized air flow in normal infants, children, and adults.
    Pasterkamp H; Powell RE; Sanchez I
    Am J Respir Crit Care Med; 1996 Aug; 154(2 Pt 1):424-30. PubMed ID: 8756817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-on-paper sound source devices.
    Tian H; Ren TL; Xie D; Wang YF; Zhou CJ; Feng TT; Fu D; Yang Y; Peng PG; Wang LG; Liu LT
    ACS Nano; 2011 Jun; 5(6):4878-85. PubMed ID: 21591811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A laboratory study on a capacitive displacement sensor as an implant microphone in totally implant cochlear hearing aid systems.
    Huang P; Guo J; Megerian CA; Young DJ; Ko WH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5692-5. PubMed ID: 18003304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of respiratory acoustic signals. Effect of microphone air cavity depth.
    Wodicka GR; Kraman SS; Zenk GM; Pasterkamp H
    Chest; 1994 Oct; 106(4):1140-4. PubMed ID: 7924486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse mode of operation of a spherical piezoceramic transducer filled with liquid and having a correcting electric circuit.
    Konovalov SI; Kuz'menko AG
    J Acoust Soc Am; 2010 Dec; 128(6):3489-95. PubMed ID: 21218881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micro-machined piezoelectric flexural-mode hydrophone with air backing: benefit of air backing for enhancing sensitivity.
    Lee H; Choi S; Moon W
    J Acoust Soc Am; 2010 Sep; 128(3):1033-44. PubMed ID: 20815440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new versatile PC-based lung sound analyzer with automatic crackle analysis (HeLSA); repeatability of spectral parameters and sound amplitude in healthy subjects.
    Sovijärvi AR; Helistö P; Malmberg LP; Kallio K; Paajanen E; Saarinen A; Lipponen P; Haltsonen S; Pekkanen L; Piirilä P; Näveri L; Katila T
    Technol Health Care; 1998 Jun; 6(1):11-22. PubMed ID: 9754680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency source for very long-range underwater communication.
    Mosca F; Matte G; Shimura T
    J Acoust Soc Am; 2013 Jan; 133(1):EL61-7. PubMed ID: 23298019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.