BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16628264)

  • 1. Retinoic acid receptor-related orphan receptor alpha as a therapeutic target in the treatment of dyslipidemia and atherosclerosis.
    Jakel H; Fruchart-Najib J; Fruchart JC
    Drug News Perspect; 2006 Mar; 19(2):91-7. PubMed ID: 16628264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The "CholesteROR" protective pathway in the vascular system.
    Boukhtouche F; Mariani J; Tedgui A
    Arterioscler Thromb Vasc Biol; 2004 Apr; 24(4):637-43. PubMed ID: 14751813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional activation of HIF-1 by RORalpha and its role in hypoxia signaling.
    Kim EJ; Yoo YG; Yang WK; Lim YS; Na TY; Lee IK; Lee MO
    Arterioscler Thromb Vasc Biol; 2008 Oct; 28(10):1796-802. PubMed ID: 18658046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinoic acid receptor-related orphan receptor alpha regulates a subset of cone genes during mouse retinal development.
    Fujieda H; Bremner R; Mears AJ; Sasaki H
    J Neurochem; 2009 Jan; 108(1):91-101. PubMed ID: 19014374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoid-related orphan receptor alpha and the regulation of lipid homeostasis.
    Fitzsimmons RL; Lau P; Muscat GE
    J Steroid Biochem Mol Biol; 2012 Jul; 130(3-5):159-68. PubMed ID: 21723946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A promoter element with enhancer properties, and the orphan nuclear receptor RORalpha, are required for Purkinje cell-specific expression of a Gi/o modulator.
    Serinagaoglu Y; Zhang R; Zhang Y; Zhang L; Hartt G; Young AP; Oberdick J
    Mol Cell Neurosci; 2007 Mar; 34(3):324-42. PubMed ID: 17215137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of orphan nuclear receptors in the development and function of the immune system.
    Dzhagalov I; Zhang N; He YW
    Cell Mol Immunol; 2004 Dec; 1(6):401-7. PubMed ID: 16293208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gene encoding fibrinogen-beta is a target for retinoic acid receptor-related orphan receptor alpha.
    Chauvet C; Bois-Joyeux B; Fontaine C; Gervois P; Bernard MA; Staels B; Danan JL
    Mol Endocrinol; 2005 Oct; 19(10):2517-26. PubMed ID: 15941850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced endocrine response to novel environment stress and lack of corticosterone circadian rhythm in staggerer (Rora sg/sg) mutant mice.
    Frédéric F; Chianale C; Oliver C; Mariani J
    J Neurosci Res; 2006 Jun; 83(8):1525-32. PubMed ID: 16555296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role of the bile salt receptor FXR in atherosclerosis.
    Hageman J; Herrema H; Groen AK; Kuipers F
    Arterioscler Thromb Vasc Biol; 2010 Aug; 30(8):1519-28. PubMed ID: 20631352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR.
    Lau P; Nixon SJ; Parton RG; Muscat GE
    J Biol Chem; 2004 Aug; 279(35):36828-40. PubMed ID: 15199055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoid-related orphan receptor gamma regulates several genes that control metabolism in skeletal muscle cells: links to modulation of reactive oxygen species production.
    Raichur S; Lau P; Staels B; Muscat GE
    J Mol Endocrinol; 2007 Jul; 39(1):29-44. PubMed ID: 17601883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUMOylation of RORalpha potentiates transcriptional activation function.
    Hwang EJ; Lee JM; Jeong J; Park JH; Yang Y; Lim JS; Kim JH; Baek SH; Kim KI
    Biochem Biophys Res Commun; 2009 Jan; 378(3):513-7. PubMed ID: 19041634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression, refolding, and purification of polyhistidine-tagged human retinoic acid related orphan receptor RORalpha4.
    Lechtken A; Zündorf I; Dingermann T; Firla B; Steinhilber D
    Protein Expr Purif; 2006 Sep; 49(1):114-20. PubMed ID: 16682227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the RORα Transcriptional Network Contributes to the Search for Therapeutic Targets in Atherosclerosis.
    Matsuoka H; Michihara A
    Biol Pharm Bull; 2021; 44(11):1607-1616. PubMed ID: 34719639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double-knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors.
    Hechler B; Freund M; Ravanat C; Magnenat S; Cazenave JP; Gachet C
    Circulation; 2008 Aug; 118(7):754-63. PubMed ID: 18663083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the human ApoAV gene as a novel RORalpha target gene.
    Lind U; Nilsson T; McPheat J; Strömstedt PE; Bamberg K; Balendran C; Kang D
    Biochem Biophys Res Commun; 2005 Apr; 330(1):233-41. PubMed ID: 15781255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melatonin and type 2 diabetes - a possible link?
    Peschke E; Stumpf I; Bazwinsky I; Litvak L; Dralle H; Mühlbauer E
    J Pineal Res; 2007 Apr; 42(4):350-8. PubMed ID: 17439551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of adipocyte differentiation by RORalpha.
    Duez H; Duhem C; Laitinen S; Patole PS; Abdelkarim M; Bois-Joyeux B; Danan JL; Staels B
    FEBS Lett; 2009 Jun; 583(12):2031-6. PubMed ID: 19450581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis.
    Kontush A; Chapman MJ
    Pharmacol Rev; 2006 Sep; 58(3):342-74. PubMed ID: 16968945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.