These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16628465)

  • 1. A new method for detecting causality in fMRI data of cognitive processing.
    Londei A; D'Ausilio A; Basso D; Belardinelli MO
    Cogn Process; 2006 Mar; 7(1):42-52. PubMed ID: 16628465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain network for passive word listening as evaluated with ICA and Granger causality.
    Londei A; D'Ausilio A; Basso D; Sestieri C; Del Gratta C; Romani GL; Olivetti Belardinelli M
    Brain Res Bull; 2007 May; 72(4-6):284-92. PubMed ID: 17452288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCTICA: Sub-packet constrained temporal ICA method for fMRI data analysis.
    Shi Y; Zeng W
    Comput Biol Med; 2018 Nov; 102():75-85. PubMed ID: 30248514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latency (in)sensitive ICA. Group independent component analysis of fMRI data in the temporal frequency domain.
    Calhoun VD; Adali T; Pekar JJ; Pearlson GD
    Neuroimage; 2003 Nov; 20(3):1661-9. PubMed ID: 14642476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discussion on the choice of separated components in fMRI data analysis by spatial independent component analysis.
    Chen H; Yao D
    Magn Reson Imaging; 2004 Jul; 22(6):827-33. PubMed ID: 15234451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of diversity in data-driven analysis of multi-subject fMRI data: Comparison of approaches based on independence and sparsity using global performance metrics.
    Long Q; Bhinge S; Levin-Schwartz Y; Boukouvalas Z; Calhoun VD; Adalı T
    Hum Brain Mapp; 2019 Feb; 40(2):489-504. PubMed ID: 30240499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition.
    Hu G; Zhang Q; Waters AB; Li H; Zhang C; Wu J; Cong F; Nickerson LD
    J Neurosci Methods; 2019 Sep; 325():108359. PubMed ID: 31306718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time independent component analysis of fMRI time-series.
    Esposito F; Seifritz E; Formisano E; Morrone R; Scarabino T; Tedeschi G; Cirillo S; Goebel R; Di Salle F
    Neuroimage; 2003 Dec; 20(4):2209-24. PubMed ID: 14683723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting cognitive stages with time-resolved fMRI data: a comparison of fuzzy clustering and independent component analysis.
    Smolders A; De Martino F; Staeren N; Scheunders P; Sijbers J; Goebel R; Formisano E
    Magn Reson Imaging; 2007 Jul; 25(6):860-8. PubMed ID: 17482412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear connectivity by Granger causality.
    Marinazzo D; Liao W; Chen H; Stramaglia S
    Neuroimage; 2011 Sep; 58(2):330-8. PubMed ID: 20132895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separating 4D multi-task fMRI data of multiple subjects by independent component analysis with projection.
    Long Z; Li R; Wen X; Jin Z; Chen K; Yao L
    Magn Reson Imaging; 2013 Jan; 31(1):60-74. PubMed ID: 22898701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization.
    Brookings T; Ortigue S; Grafton S; Carlson J
    Neuroimage; 2009 Jan; 44(2):411-20. PubMed ID: 18845263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of fMRI data by blind separation of data in a tiny spatial domain into independent temporal component.
    Chen H; Yao D; Zhuo Y; Chen L
    Brain Topogr; 2003; 15(4):223-32. PubMed ID: 12866826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis.
    Zhang H; Zuo XN; Ma SY; Zang YF; Milham MP; Zhu CZ
    Neuroimage; 2010 Jul; 51(4):1414-24. PubMed ID: 20338245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent vector analysis (IVA): multivariate approach for fMRI group study.
    Lee JH; Lee TW; Jolesz FA; Yoo SS
    Neuroimage; 2008 Mar; 40(1):86-109. PubMed ID: 18165105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iterative approach of dual regression with a sparse prior enhances the performance of independent component analysis for group functional magnetic resonance imaging (fMRI) data.
    Kim YH; Kim J; Lee JH
    Neuroimage; 2012 Dec; 63(4):1864-89. PubMed ID: 22939873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery.
    Dong L; Gong D; Valdes-Sosa PA; Xia Y; Luo C; Xu P; Yao D
    Neuroimage; 2014 Oct; 99():28-41. PubMed ID: 24852457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic causal modelling: a critical review of the biophysical and statistical foundations.
    Daunizeau J; David O; Stephan KE
    Neuroimage; 2011 Sep; 58(2):312-22. PubMed ID: 19961941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.