These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A unified scheme for the calculation of differentiated and undifferentiated molecular integrals over solid-harmonic Gaussians. Reine S; Tellgren E; Helgaker T Phys Chem Chem Phys; 2007 Sep; 9(34):4771-9. PubMed ID: 17712455 [TBL] [Abstract][Full Text] [Related]
3. Strategies for an efficient implementation of the Gauss-Bessel quadrature for the evaluation of multicenter integral over STFs. Duret S; Bouferguene A; Safouhi H J Comput Chem; 2008 Apr; 29(6):934-44. PubMed ID: 17999382 [TBL] [Abstract][Full Text] [Related]
4. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals. Kurashige Y; Nakajima T; Hirao K J Chem Phys; 2007 Apr; 126(14):144106. PubMed ID: 17444700 [TBL] [Abstract][Full Text] [Related]
5. Superlinear scaling in master-slave quantum chemical calculations using in-core storage of two-electron integrals. Fossgård E; Ruud K J Comput Chem; 2006 Feb; 27(3):326-33. PubMed ID: 16365846 [TBL] [Abstract][Full Text] [Related]
6. Orbital angular momentum eigenfunctions for fast and numerically stable evaluations of closed-form pseudopotential matrix elements. Hu A; Chan NWC; Dunlap BI J Chem Phys; 2017 Aug; 147(7):074102. PubMed ID: 28830154 [TBL] [Abstract][Full Text] [Related]
7. Tailored Gauss quadratures, a promising route for an efficient evaluation of multicenter integrals over B functions. Rebabti A; Ghomari R; Bouferguene A J Chem Phys; 2009 May; 130(20):204103. PubMed ID: 19485433 [TBL] [Abstract][Full Text] [Related]
8. New recurrence relations for the rapid evaluation of electron repulsion integrals based on the accompanying coordinate expansion formula. Kobayashi M; Nakai H J Chem Phys; 2004 Sep; 121(9):4050-8. PubMed ID: 15332950 [TBL] [Abstract][Full Text] [Related]
10. A general formulation for the efficient evaluation of n-electron integrals over products of Gaussian charge distributions with Gaussian geminal functions. Komornicki A; King HF J Chem Phys; 2011 Jun; 134(24):244115. PubMed ID: 21721620 [TBL] [Abstract][Full Text] [Related]
11. Numerical instabilities in the computation of pseudopotential matrix elements. van Wüllen C J Comput Chem; 2006 Jan; 27(2):135-41. PubMed ID: 16302223 [TBL] [Abstract][Full Text] [Related]
12. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. I. Coulomb and hybrid integrals. Lesiuk M; Moszynski R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063318. PubMed ID: 25615232 [TBL] [Abstract][Full Text] [Related]
17. Two-electron integral evaluation on the graphics processor unit. Yasuda K J Comput Chem; 2008 Feb; 29(3):334-42. PubMed ID: 17614340 [TBL] [Abstract][Full Text] [Related]
18. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals. Shiozaki T J Chem Phys; 2013 Mar; 138(11):111101. PubMed ID: 23534619 [TBL] [Abstract][Full Text] [Related]
19. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals. Golze D; Benedikter N; Iannuzzi M; Wilhelm J; Hutter J J Chem Phys; 2017 Jan; 146(3):034105. PubMed ID: 28109230 [TBL] [Abstract][Full Text] [Related]
20. An algorithm for the efficient evaluation of two-electron repulsion integrals over contracted Gaussian-type basis functions. Sandberg JA; Rinkevicius Z J Chem Phys; 2012 Dec; 137(23):234105. PubMed ID: 23267469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]