These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 16629136)
1. Use of carboxylesterase activity to remove pyrethroid-associated toxicity to Ceriodaphnia dubia and Hyalella azteca in toxicity identification evaluations. Wheelock CE; Miller JL; Miller MJ; Phillips BM; Huntley SA; Gee SJ; Tjeerdema RS; Hammock BD Environ Toxicol Chem; 2006 Apr; 25(4):973-84. PubMed ID: 16629136 [TBL] [Abstract][Full Text] [Related]
2. Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca. Wheelock CE; Miller JL; Miller MJ; Phillips BM; Gee SJ; Tjeerdema RS; Hammock BD Aquat Toxicol; 2005 Aug; 74(1):47-52. PubMed ID: 15951033 [TBL] [Abstract][Full Text] [Related]
3. Comparing the effectiveness of chronic water column tests with the crustaceans Hyalella azteca (order: Amphipoda) and Ceriodaphnia dubia (order: Cladocera) in detecting toxicity of current-use insecticides. Deanovic LA; Markiewicz D; Stillway M; Fong S; Werner I Environ Toxicol Chem; 2013 Mar; 32(3):707-12. PubMed ID: 23280766 [TBL] [Abstract][Full Text] [Related]
4. Development of toxicity identification evaluation procedures for pyrethroid detection using esterase activity. Wheelock CE; Miller JL; Miller MJ; Gee SJ; Shan G; Hammock BD Environ Toxicol Chem; 2004 Nov; 23(11):2699-708. PubMed ID: 15559286 [TBL] [Abstract][Full Text] [Related]
5. Causes of water toxicity to Hyalella azteca in the New River, California, USA. Phillips BM; Anderson BS; Hunt JW; Tjeerdema RS; Carpio-Obeso M; Connor V Environ Toxicol Chem; 2007 May; 26(5):1074-9. PubMed ID: 17521157 [TBL] [Abstract][Full Text] [Related]
6. Pyrethroid insecticides in municipal wastewater. Weston DP; Ramil HL; Lydy MJ Environ Toxicol Chem; 2013 Nov; 32(11):2460-8. PubMed ID: 23893650 [TBL] [Abstract][Full Text] [Related]
7. Toxicity of a dissolved pyrethroid mixture to Hyalella azteca at environmentally relevant concentrations. Brander SM; Werner I; White JW; Deanovic LA Environ Toxicol Chem; 2009 Jul; 28(7):1493-9. PubMed ID: 19249876 [TBL] [Abstract][Full Text] [Related]
8. Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish. Muggelberg LL; Huff Hartz KE; Nutile SA; Harwood AD; Heim JR; Derby AP; Weston DP; Lydy MJ Environ Pollut; 2017 Jan; 220(Pt A):375-382. PubMed ID: 27756597 [TBL] [Abstract][Full Text] [Related]
9. Tracking pyrethroid toxicity in surface water samples: Exposure dynamics and toxicity identification tools for laboratory tests with Hyalella azteca (Amphipoda). Deanovic LA; Stillway M; Hammock BG; Fong S; Werner I Environ Toxicol Chem; 2018 Feb; 37(2):462-472. PubMed ID: 28888045 [TBL] [Abstract][Full Text] [Related]
10. Comparative sensitivity of field and laboratory populations of Hyalella azteca to the pyrethroid insecticides bifenthrin and cypermethrin. Clark SL; Ogle RS; Gantner A; Hall LW; Mitchell G; Giddings J; McCoole M; Dobbs M; Henry K; Valenti T Environ Toxicol Chem; 2015 Oct; 34(10):2250-62. PubMed ID: 25929226 [TBL] [Abstract][Full Text] [Related]
11. Are there fitness costs of adaptive pyrethroid resistance in the amphipod, Hyalella azteca? Heim JR; Weston DP; Major K; Poynton H; Huff Hartz KE; Lydy MJ Environ Pollut; 2018 Apr; 235():39-46. PubMed ID: 29274536 [TBL] [Abstract][Full Text] [Related]
12. Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Amweg EL; Weston DP; Ureda NM Environ Toxicol Chem; 2005 Apr; 24(4):966-72. PubMed ID: 15839572 [TBL] [Abstract][Full Text] [Related]
14. Effects of temperature and salinity on bioconcentration and toxicokinetics of permethrin in pyrethroid-resistant Hyalella azteca. Derby AP; Huff Hartz KE; Fuller NW; Landrum PF; Reeve JD; Poynton HC; Connon RE; Lydy MJ Chemosphere; 2022 Jul; 299():134393. PubMed ID: 35337826 [TBL] [Abstract][Full Text] [Related]
15. Bioavailability of permethrin and cyfluthrin in surface waters with low levels of dissolved organic matter. Yang WC; Hunter W; Spurlock F; Gan J J Environ Qual; 2007; 36(6):1678-85. PubMed ID: 17940268 [TBL] [Abstract][Full Text] [Related]
16. Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin. Liu W; Gan J; Lee S; Werner I Environ Toxicol Chem; 2005 Aug; 24(8):1861-6. PubMed ID: 16152954 [TBL] [Abstract][Full Text] [Related]
17. Pyrethroid and organophosphate pesticide-associated toxicity in two coastal watersheds (California, USA). Phillips BM; Anderson BS; Hunt JW; Siegler K; Voorhees JP; Tjeerdema RS; McNeill K Environ Toxicol Chem; 2012 Jul; 31(7):1595-603. PubMed ID: 22549911 [TBL] [Abstract][Full Text] [Related]
18. Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Wheelock CE; Phillips BM; Anderson BS; Miller JL; Miller MJ; Hammock BD Rev Environ Contam Toxicol; 2008; 195():117-78. PubMed ID: 18418956 [TBL] [Abstract][Full Text] [Related]
19. The contribution of detoxification pathways to pyrethroid resistance in Hyalella azteca. Fung CY; Zhu KY; Major K; Poynton HC; Huff Hartz KE; Wellborn G; Lydy MJ Environ Pollut; 2021 Sep; 284():117158. PubMed ID: 33895574 [TBL] [Abstract][Full Text] [Related]
20. Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides. Liu W; Gan JJ; Qin S Chirality; 2005; 17 Suppl():S127-33. PubMed ID: 15806620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]