These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 16629182)
21. Increased mitochondrial uptake of rhodamine 123 during interferon-gamma stimulation in Molt 16 cells. Iwagaki H; Fuchimoto S; Miyake M; Oirta K Lymphokine Res; 1990; 9(3):365-9. PubMed ID: 2118972 [TBL] [Abstract][Full Text] [Related]
22. Friedreich's ataxia: coenzyme Q10 and vitamin E therapy. Cooper JM; Schapira AH Mitochondrion; 2007 Jun; 7 Suppl():S127-35. PubMed ID: 17485244 [TBL] [Abstract][Full Text] [Related]
23. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Mühlenhoff U; Richhardt N; Ristow M; Kispal G; Lill R Hum Mol Genet; 2002 Aug; 11(17):2025-36. PubMed ID: 12165564 [TBL] [Abstract][Full Text] [Related]
24. Real-Time Monitoring ATP in Mitochondrion of Living Cells: A Specific Fluorescent Probe for ATP by Dual Recognition Sites. Tan KY; Li CY; Li YF; Fei J; Yang B; Fu YJ; Li F Anal Chem; 2017 Feb; 89(3):1749-1756. PubMed ID: 28208302 [TBL] [Abstract][Full Text] [Related]
25. Mitochondrial dysfunction in friedreich's ataxia. Lodi R; Taylor DJ; Schapira AH Biol Signals Recept; 2001; 10(3-4):263-70. PubMed ID: 11351132 [TBL] [Abstract][Full Text] [Related]
26. Efficient attenuation of Friedreich's ataxia (FRDA) cardiomyopathy by modulation of iron homeostasis-human induced pluripotent stem cell (hiPSC) as a drug screening platform for FRDA. Lee YK; Lau YM; Ng KM; Lai WH; Ho SL; Tse HF; Siu CW; Ho PW Int J Cardiol; 2016 Jan; 203():964-71. PubMed ID: 26625322 [TBL] [Abstract][Full Text] [Related]
27. Organic cation rhodamines for screening organic cation transporters in early stages of drug development. Ugwu MC; Oli A; Esimone CO; Agu RU J Pharmacol Toxicol Methods; 2016; 82():9-19. PubMed ID: 27235784 [TBL] [Abstract][Full Text] [Related]
28. A ratiometric fluorescent probe for in situ quantification of basal mitochondrial hypochlorite in cancer cells. Hou JT; Li K; Yang J; Yu KK; Liao YX; Ran YZ; Liu YH; Zhou XD; Yu XQ Chem Commun (Camb); 2015 Apr; 51(31):6781-4. PubMed ID: 25785927 [TBL] [Abstract][Full Text] [Related]
29. Interaction of rhodamine 123 with living cells studied by flow cytometry. Darzynkiewicz Z; Traganos F; Staiano-Coico L; Kapuscinski J; Melamed MR Cancer Res; 1982 Mar; 42(3):799-806. PubMed ID: 7059978 [TBL] [Abstract][Full Text] [Related]
30. The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Mena NP; García-Beltrán O; Lourido F; Urrutia PJ; Mena R; Castro-Castillo V; Cassels BK; Núñez MT Biochem Biophys Res Commun; 2015 Aug; 463(4):787-92. PubMed ID: 26051278 [TBL] [Abstract][Full Text] [Related]
31. Deferiprone for the treatment of Friedreich's ataxia. Pandolfo M; Hausmann L J Neurochem; 2013 Aug; 126 Suppl 1():142-6. PubMed ID: 23859349 [TBL] [Abstract][Full Text] [Related]
32. Rhodamine-based "turn-on" fluorescent probe with high selectivity for Fe(2+) imaging in living cells. Hou GG; Wang CH; Sun JF; Yang MZ; Lin D; Li HJ Biochem Biophys Res Commun; 2013 Oct; 439(4):459-63. PubMed ID: 24025683 [TBL] [Abstract][Full Text] [Related]
33. A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Wolff NA; Garrick MD; Zhao L; Garrick LM; Ghio AJ; Thévenod F Sci Rep; 2018 Jan; 8(1):211. PubMed ID: 29317744 [TBL] [Abstract][Full Text] [Related]
34. The chemical form of mitochondrial iron in Friedreich's ataxia. Popescu BF; Pickering IJ; George GN; Nichol H J Inorg Biochem; 2007 Jun; 101(6):957-66. PubMed ID: 17475338 [TBL] [Abstract][Full Text] [Related]
35. A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. Lee MH; Giap TV; Kim SH; Lee YH; Kang C; Kim JS Chem Commun (Camb); 2010 Mar; 46(9):1407-9. PubMed ID: 20162130 [TBL] [Abstract][Full Text] [Related]
36. Iron-sulfur protein maturation in human cells: evidence for a function of frataxin. Stehling O; Elsässer HP; Brückel B; Mühlenhoff U; Lill R Hum Mol Genet; 2004 Dec; 13(23):3007-15. PubMed ID: 15509595 [TBL] [Abstract][Full Text] [Related]
37. Iron: a new target for pharmacological intervention in neurodegenerative diseases. Whitnall M; Richardson DR Semin Pediatr Neurol; 2006 Sep; 13(3):186-97. PubMed ID: 17101458 [TBL] [Abstract][Full Text] [Related]
38. Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease. Huang ML; Lane DJ; Richardson DR Antioxid Redox Signal; 2011 Dec; 15(12):3003-19. PubMed ID: 21545274 [TBL] [Abstract][Full Text] [Related]
39. A mitochondria-targeted fluorescent probe for selective detection of mitochondrial labile Fe(ii). Hirayama T; Kadota S; Niwa M; Nagasawa H Metallomics; 2018 Jun; 10(6):794-801. PubMed ID: 29863204 [TBL] [Abstract][Full Text] [Related]
40. Increased mitochondrial uptake of rhodamine 123 during lymphocyte stimulation. Darzynkiewicz Z; Staiano-Coico L; Melamed MR Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2383-7. PubMed ID: 6941298 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]