BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 16629627)

  • 1. Collagen matrix in spinal cord injury.
    Klapka N; Müller HW
    J Neurotrauma; 2006; 23(3-4):422-35. PubMed ID: 16629627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo.
    Vogelaar CF; König B; Krafft S; Estrada V; Brazda N; Ziegler B; Faissner A; Müller HW
    PLoS One; 2015; 10(7):e0134371. PubMed ID: 26222542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery.
    Klapka N; Hermanns S; Straten G; Masanneck C; Duis S; Hamers FP; Müller D; Zuschratter W; Müller HW
    Eur J Neurosci; 2005 Dec; 22(12):3047-58. PubMed ID: 16367771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological modification of the extracellular matrix to promote regeneration of the injured brain and spinal cord.
    Brazda N; Müller HW
    Prog Brain Res; 2009; 175():269-81. PubMed ID: 19660662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of basal lamina and the collagen "scar" after spinal cord injury fails to augment corticospinal tract regeneration.
    Weidner N; Grill RJ; Tuszynski MH
    Exp Neurol; 1999 Nov; 160(1):40-50. PubMed ID: 10630189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of matrix metalloproteinases during axonal regeneration in the goldfish spinal cord.
    Takeda A; Kanemura A; Funakoshi K
    J Chem Neuroanat; 2021 Dec; 118():102041. PubMed ID: 34774721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial inhibition of CNS axon regeneration.
    Yiu G; He Z
    Nat Rev Neurosci; 2006 Aug; 7(8):617-27. PubMed ID: 16858390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.
    Takeda A; Okada S; Funakoshi K
    Brain Res; 2017 Oct; 1673():23-29. PubMed ID: 28801063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The collagenous lesion scar--an obstacle for axonal regeneration in brain and spinal cord injury.
    Hermanns S; Klapka N; Müller HW
    Restor Neurol Neurosci; 2001; 19(1-2):139-48. PubMed ID: 12082234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen IV deposits do not prevent regrowing axons from penetrating the lesion site in spinal cord injury.
    Joosten EA; Dijkstra S; Brook GA; Veldman H; Bär PR
    J Neurosci Res; 2000 Dec; 62(5):686-91. PubMed ID: 11104506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regrowth of motor axons following spinal cord lesions: distribution of laminin and collagen in the CNS scar tissue.
    Risling M; Fried K; Linda H; Carlstedt T; Cullheim S
    Brain Res Bull; 1993; 30(3-4):405-14. PubMed ID: 8457890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord.
    Camand E; Morel MP; Faissner A; Sotelo C; Dusart I
    Eur J Neurosci; 2004 Sep; 20(5):1161-76. PubMed ID: 15341588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NG2+ progenitors derived from embryonic stem cells penetrate glial scar and promote axonal outgrowth into white matter after spinal cord injury.
    Vadivelu S; Stewart TJ; Qu Y; Horn K; Liu S; Li Q; Silver J; McDonald JW
    Stem Cells Transl Med; 2015 Apr; 4(4):401-11. PubMed ID: 25713464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1-6) in rat spinal cord and peripheral nerve after axonal injuries.
    Hammarberg H; Risling M; Hökfelt T; Cullheim S; Piehl F
    J Comp Neurol; 1998 Oct; 400(1):57-72. PubMed ID: 9762866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord.
    Takeda A; Atobe Y; Kadota T; Goris RC; Funakoshi K
    Neuroscience; 2015 Jan; 284():134-152. PubMed ID: 25290012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decorin promotes plasminogen/plasmin expression within acute spinal cord injuries and by adult microglia in vitro.
    Davies JE; Tang X; Bournat JC; Davies SJ
    J Neurotrauma; 2006; 23(3-4):397-408. PubMed ID: 16629625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axon regeneration through scars and into sites of chronic spinal cord injury.
    Lu P; Jones LL; Tuszynski MH
    Exp Neurol; 2007 Jan; 203(1):8-21. PubMed ID: 17014846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact inhibition in the failure of mammalian CNS axonal regeneration.
    Johnson AR
    Bioessays; 1993 Dec; 15(12):807-13. PubMed ID: 8141799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinases and proteoglycans in axonal regeneration.
    Pizzi MA; Crowe MJ
    Exp Neurol; 2007 Apr; 204(2):496-511. PubMed ID: 17254568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.