These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 16629747)

  • 41. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan.
    Egamberdieva D; Kamilova F; Validov S; Gafurova L; Kucharova Z; Lugtenberg B
    Environ Microbiol; 2008 Jan; 10(1):1-9. PubMed ID: 18211262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR).
    Choudhary DK; Johri BN
    Microbiol Res; 2009; 164(5):493-513. PubMed ID: 18845426
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Employing Bacillus and Pseudomonas for phytonematode management in agricultural crops.
    Gupta R; Anand G; Pandey R; Bar M; Yadav D
    World J Microbiol Biotechnol; 2024 Oct; 40(11):331. PubMed ID: 39358574
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Isolation and characterization of a new Pseudomonas strain against Phytophthora capsici].
    He YJ; Liu HM; Hu HB; Xu YQ; Zhang XH
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):516-21. PubMed ID: 17037046
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential agricultural benefits through biotechnological manipulation of plant fungal associations.
    Behie SW; Bidochka MJ
    Bioessays; 2013 Apr; 35(4):328-31. PubMed ID: 23319143
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rhizobacterial diversity in India and its influence on soil and plant health.
    Johri BN; Sharma A; Virdi JS
    Adv Biochem Eng Biotechnol; 2003; 84():49-89. PubMed ID: 12934933
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strategies for biological system management of nematodes in horticultural crops: fumigate, confuse or ignore them.
    Sikora RA
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):5-18. PubMed ID: 12701401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation.
    Walsh UF; Morrissey JP; O'Gara F
    Curr Opin Biotechnol; 2001 Jun; 12(3):289-95. PubMed ID: 11404107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biological control in greenhouse systems.
    Paulitz TC; BĂ©langer RR
    Annu Rev Phytopathol; 2001; 39():103-33. PubMed ID: 11701861
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biotechnological perspectives of microbes in agro-ecosystems.
    Choudhary DK; Sharma KP; Gaur RK
    Biotechnol Lett; 2011 Oct; 33(10):1905-10. PubMed ID: 21660571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola.
    Zhou T; Schneider KE; Li XZ
    Int J Food Microbiol; 2008 Aug; 126(1-2):180-5. PubMed ID: 18573559
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular basis of plant growth promotion and biocontrol by rhizobacteria.
    Bloemberg GV; Lugtenberg BJ
    Curr Opin Plant Biol; 2001 Aug; 4(4):343-50. PubMed ID: 11418345
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heterozygosis drives maize hybrids to select elite 2,4-diacethylphloroglucinol-producing Pseudomonas strains among resident soil populations.
    Picard C; Bosco M
    FEMS Microbiol Ecol; 2006 Nov; 58(2):193-204. PubMed ID: 17064261
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24.
    Wei HL; Zhang LQ
    Antonie Van Leeuwenhoek; 2006 Feb; 89(2):267-80. PubMed ID: 16710638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere.
    Berg G; Smalla K
    FEMS Microbiol Ecol; 2009 Apr; 68(1):1-13. PubMed ID: 19243436
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micro-organisms as fertilizers and pest control agents in agricultural crops.
    Erceg D; O'Brien P; Glenn AR
    Aust J Biotechnol; 1990 Jul; 4(3):177-82, 200. PubMed ID: 1369277
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion.
    Kannan V; Sureendar R
    J Basic Microbiol; 2009 Apr; 49(2):158-64. PubMed ID: 18792056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards.
    Flores-Vargas RD; O'Hara GW
    J Appl Microbiol; 2006 May; 100(5):946-54. PubMed ID: 16629995
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trichoderma for climate resilient agriculture.
    Kashyap PL; Rai P; Srivastava AK; Kumar S
    World J Microbiol Biotechnol; 2017 Aug; 33(8):155. PubMed ID: 28695465
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prospects for Biological Soilborne Disease Control: Application of Indigenous Versus Synthetic Microbiomes.
    Mazzola M; Freilich S
    Phytopathology; 2017 Mar; 107(3):256-263. PubMed ID: 27898265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.