These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The influence of synthetic sheep urine on ammonia oxidizing bacterial communities in grassland soil. Mahmood S; Prosser JI FEMS Microbiol Ecol; 2006 Jun; 56(3):444-54. PubMed ID: 16689876 [TBL] [Abstract][Full Text] [Related]
3. Response of fungal, bacterial and ureolytic communities to synthetic sheep urine deposition in a grassland soil. Singh BK; Nunan N; Millard P FEMS Microbiol Ecol; 2009 Oct; 70(1):109-17. PubMed ID: 19622069 [TBL] [Abstract][Full Text] [Related]
4. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
5. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils. Yao HY; Liu YY; Xue D; Huang CY J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647 [TBL] [Abstract][Full Text] [Related]
6. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. Kim MC; Ahn JH; Shin HC; Kim T; Ryu TH; Kim DH; Song HG; Lee GH; Ka JO J Microbiol Biotechnol; 2008 Feb; 18(2):207-18. PubMed ID: 18309263 [TBL] [Abstract][Full Text] [Related]
7. Spatial structure in soil chemical and microbiological properties in an upland grassland. Ritz K; McNicol JW; Nunan N; Grayston S; Millard P; Atkinson D; Gollotte A; Habeshaw D; Boag B; Clegg CD; Griffiths BS; Wheatley RE; Glover LA; McCaig AE; Prosser JI FEMS Microbiol Ecol; 2004 Aug; 49(2):191-205. PubMed ID: 19712414 [TBL] [Abstract][Full Text] [Related]
8. Impact of sheep urine deposition and plant species on ammonia-oxidizing bacteria in upland grassland soil. Rooney DC; Clipson N Can J Microbiol; 2008 Sep; 54(9):791-6. PubMed ID: 18772943 [TBL] [Abstract][Full Text] [Related]
9. Soil microbial community response to land use change in an agricultural landscape of western Kenya. Bossio DA; Girvan MS; Verchot L; Bullimore J; Borelli T; Albrecht A; Scow KM; Ball AS; Pretty JN; Osborn AM Microb Ecol; 2005 Jan; 49(1):50-62. PubMed ID: 15690227 [TBL] [Abstract][Full Text] [Related]
10. Impact of imazethapyr on the microbial community structure in agricultural soils. Zhang C; Xu J; Liu X; Dong F; Kong Z; Sheng Y; Zheng Y Chemosphere; 2010 Oct; 81(6):800-6. PubMed ID: 20659755 [TBL] [Abstract][Full Text] [Related]
11. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. Costa R; Götz M; Mrotzek N; Lottmann J; Berg G; Smalla K FEMS Microbiol Ecol; 2006 May; 56(2):236-49. PubMed ID: 16629753 [TBL] [Abstract][Full Text] [Related]
12. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
13. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. Ros M; Goberna M; Pascual JA; Klammer S; Insam H J Microbiol Methods; 2008 Mar; 72(3):221-6. PubMed ID: 18258321 [TBL] [Abstract][Full Text] [Related]
14. Assessing the impact of the biological control agent Bacillus thuringiensis on the indigenous microbial community within the pepper plant phyllosphere. Zhang B; Bai Z; Hoefel D; Tang L; Yang Z; Zhuang G; Yang J; Zhang H FEMS Microbiol Lett; 2008 Jul; 284(1):102-8. PubMed ID: 18462395 [TBL] [Abstract][Full Text] [Related]
15. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
16. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
17. Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil. Nicol GW; Webster G; Glover LA; Prosser JI Environ Microbiol; 2004 Aug; 6(8):861-7. PubMed ID: 15250888 [TBL] [Abstract][Full Text] [Related]
18. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Dell'Amico E; Mazzocchi M; Cavalca L; Allievi L; Andreoni V Microbiol Res; 2008; 163(6):671-83. PubMed ID: 17207985 [TBL] [Abstract][Full Text] [Related]
19. The impact of grassland management regime on the community structure of selected bacterial groups in soils. Clegg CD; Lovell RD; Hobbs PJ FEMS Microbiol Ecol; 2003 Mar; 43(2):263-70. PubMed ID: 19719687 [TBL] [Abstract][Full Text] [Related]
20. Mesocosm-scale evaluation of faunal and microbial communities of aerated and unaerated leachfield soil. Amador JA; Potts DA; Savin MC; Tomlinson P; Görres JH; Nicosia EL J Environ Qual; 2006; 35(4):1160-9. PubMed ID: 16738402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]