BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 16630048)

  • 21. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury.
    Roonprapunt C; Huang W; Grill R; Friedlander D; Grumet M; Chen S; Schachner M; Young W
    J Neurotrauma; 2003 Sep; 20(9):871-82. PubMed ID: 14577865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reorganization of corticospinal tract fibers after spinal cord injury in adult macaques.
    Nakagawa H; Ninomiya T; Yamashita T; Takada M
    Sci Rep; 2015 Jul; 5():11986. PubMed ID: 26132896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. L1 cell adhesion molecule is essential for the maintenance of hyperalgesia after spinal cord injury.
    Hoschouer EL; Yin FQ; Jakeman LB
    Exp Neurol; 2009 Mar; 216(1):22-34. PubMed ID: 19059398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats.
    Wang X; Hu J; She Y; Smith GM; Xu XM
    Cereb Cortex; 2014 Nov; 24(11):3069-79. PubMed ID: 23810979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of Both Intrinsic and Extrinsic Factors Additively Promotes Rewiring of Corticospinal Circuits after Spinal Cord Injury.
    Nakamura Y; Ueno M; Niehaus JK; Lang RA; Zheng Y; Yoshida Y
    J Neurosci; 2021 Dec; 41(50):10247-10260. PubMed ID: 34759029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trimebutine, a small molecule mimetic agonist of adhesion molecule L1, contributes to functional recovery after spinal cord injury in mice.
    Xu J; Hu C; Jiang Q; Pan H; Shen H; Schachner M
    Dis Model Mech; 2017 Sep; 10(9):1117-1128. PubMed ID: 28714852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. L1 CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates.
    Kubasak MD; Hedlund E; Roy RR; Carpenter EM; Edgerton VR; Phelps PE
    Exp Neurol; 2005 Aug; 194(2):363-75. PubMed ID: 16022864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Longitudinal Optogenetic Motor Mapping Revealed Structural and Functional Impairments and Enhanced Corticorubral Projection after Contusive Spinal Cord Injury in Mice.
    Qian J; Wu W; Xiong W; Chai Z; Xu XM; Jin X
    J Neurotrauma; 2019 Feb; 36(3):485-499. PubMed ID: 29848155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats.
    Lee YS; Lin CY; Robertson RT; Hsiao I; Lin VW
    J Neuropathol Exp Neurol; 2004 Mar; 63(3):233-45. PubMed ID: 15055447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice.
    Steward O; Sharp K; Yee KM; Hofstadter M
    Exp Neurol; 2008 Feb; 209(2):446-68. PubMed ID: 18234196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat.
    Hendriks WT; Eggers R; Ruitenberg MJ; Blits B; Hamers FP; Verhaagen J; Boer GJ
    J Neurotrauma; 2006 Jan; 23(1):18-35. PubMed ID: 16430370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Xenografts of expanded primate olfactory ensheathing glia support transient behavioral recovery that is independent of serotonergic or corticospinal axonal regeneration in nude rats following spinal cord transection.
    Guest JD; Herrera L; Margitich I; Oliveria M; Marcillo A; Casas CE
    Exp Neurol; 2008 Aug; 212(2):261-74. PubMed ID: 18511045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.
    Floriddia EM; Rathore KI; Tedeschi A; Quadrato G; Wuttke A; Lueckmann JM; Kigerl KA; Popovich PG; Di Giovanni S
    J Neurosci; 2012 Oct; 32(40):13956-70. PubMed ID: 23035104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function.
    Blits B; Dijkhuizen PA; Boer GJ; Verhaagen J
    Exp Neurol; 2000 Jul; 164(1):25-37. PubMed ID: 10877912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of axonal regeneration following spinal cord injury in the lamprey.
    Benes JA; House KN; Burks FN; Conaway KP; Julien DP; Donley JP; Iyamu MA; McClellan AD
    J Neurophysiol; 2017 Sep; 118(3):1439-1456. PubMed ID: 28469003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Axon regeneration in young adult mice lacking Nogo-A/B.
    Kim JE; Li S; GrandPré T; Qiu D; Strittmatter SM
    Neuron; 2003 Apr; 38(2):187-99. PubMed ID: 12718854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury.
    Omoto S; Ueno M; Mochio S; Yamashita T
    Neurosci Res; 2011 Mar; 69(3):187-95. PubMed ID: 21147179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.