These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 16630062)
1. Evidence for a role of CaMKIV in the development of opioid analgesic tolerance. Ko SW; Jia Y; Xu H; Yim SJ; Jang DH; Lee YS; Zhao MG; Toyoda H; Wu LJ; Chatila T; Kaang BK; Zhuo M Eur J Neurosci; 2006 Apr; 23(8):2158-68. PubMed ID: 16630062 [TBL] [Abstract][Full Text] [Related]
2. Mu-opioid receptors are involved in the tolerance to nicotine antinociception. Galeote L; Kieffer BL; Maldonado R; Berrendero F J Neurochem; 2006 Apr; 97(2):416-23. PubMed ID: 16539669 [TBL] [Abstract][Full Text] [Related]
3. Colocalization of phosphorylated CREB with calcium/calmodulin-dependent protein kinase IV in hippocampal neurons induced by ohmfentanyl stereoisomers. Gao C; Chen L; Tao Y; Chen J; Xu X; Zhang G; Chi Z Brain Res; 2004 Oct; 1024(1-2):25-33. PubMed ID: 15451364 [TBL] [Abstract][Full Text] [Related]
4. Loss of TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but paradoxically potentiates opioid analgesia. Chen SR; Pan HL J Neurophysiol; 2006 May; 95(5):3086-96. PubMed ID: 16467418 [TBL] [Abstract][Full Text] [Related]
5. Phospholipase Cbeta1 modulates pain sensitivity, opioid antinociception and opioid tolerance formation. Liu NJ; vonGizycki H; Gintzler AR Brain Res; 2006 Jan; 1069(1):47-53. PubMed ID: 16405873 [TBL] [Abstract][Full Text] [Related]
6. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling. Wang HY; Friedman E; Olmstead MC; Burns LH Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657 [TBL] [Abstract][Full Text] [Related]
7. mu-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to mu-opioid receptor agonists: Comparison between etorphine and morphine. Narita M; Suzuki M; Narita M; Niikura K; Nakamura A; Miyatake M; Yajima Y; Suzuki T Neuroscience; 2006; 138(2):609-19. PubMed ID: 16417975 [TBL] [Abstract][Full Text] [Related]
8. RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons. Rodríguez-Muñoz M; de la Torre-Madrid E; Gaitán G; Sánchez-Blázquez P; Garzón J Cell Signal; 2007 Dec; 19(12):2558-71. PubMed ID: 17825524 [TBL] [Abstract][Full Text] [Related]
9. Opioid peptide receptor studies. 17. Attenuation of chronic morphine effects after antisense oligodeoxynucleotide knock-down of RGS9 protein in cells expressing the cloned Mu opioid receptor. Xu H; Wang X; Wang J; Rothman RB Synapse; 2004 Jun; 52(3):209-17. PubMed ID: 15065220 [TBL] [Abstract][Full Text] [Related]
10. Aquaporin 4 deficiency modulates morphine pharmacological actions. Wu N; Lu XQ; Yan HT; Su RB; Wang JF; Liu Y; Hu G; Li J Neurosci Lett; 2008 Dec; 448(2):221-5. PubMed ID: 18973795 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms in dizocilpine-induced attenuation of development of morphine dependence: an association with cortical Ca2+/calmodulin-dependent signal cascade. Hamdy MM; Noda Y; Miyazaki M; Mamiya T; Nozaki A; Nitta A; Sayed M; Assi AA; Gomaa A; Nabeshima T Behav Brain Res; 2004 Jul; 152(2):263-70. PubMed ID: 15196794 [TBL] [Abstract][Full Text] [Related]
12. Sex-dependent effects of periadolescent exposure to the cannabinoid agonist CP-55,940 on morphine self-administration behaviour and the endogenous opioid system. Biscaia M; Fernández B; Higuera-Matas A; Miguéns M; Viveros MP; García-Lecumberri C; Ambrosio E Neuropharmacology; 2008 Apr; 54(5):863-73. PubMed ID: 18329053 [TBL] [Abstract][Full Text] [Related]
13. Neurofilament proteins and cAMP pathway in brains of mu-, delta- or kappa-opioid receptor gene knock-out mice: effects of chronic morphine administration. García-Sevilla JA; Ferrer-Alcón M; Martín M; Kieffer BL; Maldonado R Neuropharmacology; 2004 Mar; 46(4):519-30. PubMed ID: 14975676 [TBL] [Abstract][Full Text] [Related]
14. Genetic alteration of anxiety and stress-like behavior in mice lacking CaMKIV. Shum FW; Ko SW; Lee YS; Kaang BK; Zhuo M Mol Pain; 2005 Aug; 1():22. PubMed ID: 16102169 [TBL] [Abstract][Full Text] [Related]
15. Changes in G proteins genes expression in rat lumbar spinal cord support the inhibitory effect of chronic pain on the development of tolerance to morphine analgesia. Javan M; Ahmadiani A; Motamadi F; Kazemi B Neurosci Res; 2005 Nov; 53(3):250-6. PubMed ID: 16055216 [TBL] [Abstract][Full Text] [Related]
16. Dexamethasone mimics the inhibitory effect of chronic pain on the development of tolerance to morphine analgesia and compensates for morphine induced changes in G proteins gene expression. Javan M; Kazemi B; Ahmadiani A; Motamedi F Brain Res; 2006 Aug; 1104(1):73-9. PubMed ID: 16828064 [TBL] [Abstract][Full Text] [Related]
17. Activation of AP-1 and CRE-dependent gene expression via mu-opioid receptor. Bilecki W; Wawrzczak-Bargiela A; Przewlocki R J Neurochem; 2004 Aug; 90(4):874-82. PubMed ID: 15287893 [TBL] [Abstract][Full Text] [Related]
18. Attenuation of opioid analgesic tolerance in p75 neurotrophin receptor null mutant mice. Trang T; Koblic P; Kawaja M; Jhamandas K Neurosci Lett; 2009 Feb; 451(1):69-73. PubMed ID: 19114089 [TBL] [Abstract][Full Text] [Related]
19. Trifluoperazine, an orally available clinically used drug, disrupts opioid antinociceptive tolerance. Tang L; Shukla PK; Wang ZJ Neurosci Lett; 2006 Apr 10-17; 397(1-2):1-4. PubMed ID: 16380209 [TBL] [Abstract][Full Text] [Related]
20. Involvement of kappa opioid receptors in the inhibition of receptor desensitization and PKC activation induced by repeated morphine treatment. Hamabe W; Yamane H; Harada S; Tokuyama S J Pharm Pharmacol; 2008 Sep; 60(9):1183-8. PubMed ID: 18718122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]