These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 1663044)

  • 1. Vasoactive intestinal peptide receptor antagonists in rat seminal vesicle membranes.
    Rodríguez-Pena MS; Guijarro LG; Prieto JC
    Eur J Pharmacol; 1991 Nov; 208(3):207-12. PubMed ID: 1663044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of VIP receptor-effector system antagonists in rat and mouse peritoneal macrophages.
    Pozo D; Montilla ML; Guerrero JM; Calvo JR
    Eur J Pharmacol; 1997 Mar; 321(3):379-86. PubMed ID: 9085051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of growth hormone-releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N-Ac-Tyr1,D-Phe2)-GRF(1-29)-NH2 as a VIP antagonist.
    Waelbroeck M; Robberecht P; Coy DH; Camus JC; De Neef P; Christophe J
    Endocrinology; 1985 Jun; 116(6):2643-9. PubMed ID: 2859987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The entire vasoactive intestinal polypeptide molecule is required for the activation of the vasoactive intestinal polypeptide receptor: functional and binding studies on opossum internal anal sphincter smooth muscle.
    Chakder S; Rattan S
    J Pharmacol Exp Ther; 1993 Jul; 266(1):392-9. PubMed ID: 8392560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of species specificity in growth hormone-releasing factor (GRF) interaction with vasoactive intestinal peptide (VIP) receptors using GRF and intestinal VIP receptors from rat and human: evidence that Ac-Tyr1hGRF is a competitive VIP antagonist in the rat.
    Laburthe M; Couvineau A; Rouyer-Fessard C
    Mol Pharmacol; 1986 Jan; 29(1):23-7. PubMed ID: 3003561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative structural requirements of thirty GRF analogs for interaction with GRF- and VIP receptors and coupling to adenylate cyclase in rat adenopituitary, liver and pancreas.
    Robberecht P; Waelbroeck M; Coy D; De Neef P; Camus JC; Christophe J
    Peptides; 1986; 7 Suppl 1():53-9. PubMed ID: 3018703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [D-Phe4]peptide histidine-isoleucinamide ([D-Phe4]PHI), a highly selective vasoactive-intestinal-peptide (VIP) agonist, discriminates VIP-preferring from secretin-preferring receptors in rat pancreatic membranes.
    Robberecht P; Coy DH; De Neef P; Camus JC; Cauvin A; Waelbroeck M; Christophe J
    Eur J Biochem; 1987 Jun; 165(2):243-9. PubMed ID: 3036504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of ovine pituitary adenylate cyclase-activating peptide (PACAP-38) with rat lung membranes.
    Bitar KG; Coy DH
    Peptides; 1993; 14(3):621-7. PubMed ID: 8392724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of vasoactive intestinal peptide (VIP) and N-terminally modified VIP analogs with rat pancreatic, hepatic and pituitary membranes.
    Robberecht P; Coy DH; De Neef P; Camus JC; Cauvin A; Waelbroeck M; Christophe J
    Eur J Biochem; 1986 Aug; 159(1):45-9. PubMed ID: 3017717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heart receptors for VIP, PHI and secretin are able to activate adenylate cyclase and to mediate inotropic and chronotropic effects. Species variations and physiopathology.
    Christophe J; Waelbroeck M; Chatelain P; Robberecht P
    Peptides; 1984; 5(2):341-53. PubMed ID: 6089134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vasoactive intestinal polypeptide antagonists on cholinergic neurotransmission in dog and cat trachea.
    Xie ZQ; Hirose T; Hakoda H; Ito Y
    Br J Pharmacol; 1991 Dec; 104(4):938-44. PubMed ID: 1667294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of binding sites for VIP-related peptides and activation of adenylate cyclase in developing pancreas.
    Le Meuth V; Farjaudon N; Bawab W; Chastre E; Rosselin G; Guilloteau P; Gespach C
    Am J Physiol; 1991 Feb; 260(2 Pt 1):G265-74. PubMed ID: 1847591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of antagonists of vasoactive intestinal peptide on nonadrenergic noncholinergic inhibitory responses in feline airways.
    Thompson DC; Altiere RJ; Diamond L
    Peptides; 1988; 9(2):443-7. PubMed ID: 3131749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of effect of vasoactive intestinal peptide antagonists on blood flow in the rat thyroid.
    Michalkiewicz M; Huffman LJ; Hedge GA
    Peptides; 1991; 12(6):1181-6. PubMed ID: 1815206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenylyl cyclase stimulation by VIP in rat seminal vesicle membranes.
    Rodriguez-Pena MS; Guijarro LG; Prieto JC
    Peptides; 1991; 12(4):821-4. PubMed ID: 1664946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasoactive intestinal peptide and intraocular pressure: adenylate cyclase activation and binding sites for vasoactive intestinal peptide in membranes of ocular ciliary processes.
    Mittag TW; Tormay A; Podos SM
    J Pharmacol Exp Ther; 1987 Apr; 241(1):230-5. PubMed ID: 3033201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasoactive intestinal polypeptide receptor VPAC(1) subtype is predominant in rat prostate membranes.
    Juarranz MG; De Neef P; Robberecht P
    Prostate; 1999 Sep; 41(1):1-6. PubMed ID: 10440869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural requirements for the activation of rat anterior pituitary adenylate cyclase by growth hormone-releasing factor (GRF): discovery of (N-Ac-Tyr1, D-Arg2)-GRF(1-29)-NH2 as a GRF antagonist on membranes.
    Robberecht P; Coy DH; Waelbroeck M; Heiman ML; de Neef P; Camus JC; Christophe J
    Endocrinology; 1985 Nov; 117(5):1759-64. PubMed ID: 2994998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of vasoactive-intestinal-peptide receptors and beta-adrenoceptors in the murine radiation leukemia-virus-induced lymphoma cell line BL/VL3.
    Abello J; Damien C; De Neef P; Tastenoy M; Hooghe R; Robberecht P; Christophe J
    Eur J Biochem; 1989 Aug; 183(2):263-7. PubMed ID: 2547606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasoactive intestinal peptide effects on GH3 pituitary tumor cells: high affinity binding, affinity labeling, and adenylate cyclase stimulation. Comparison with peptide histidine isoleucine and growth hormone-releasing factor.
    Wood CL; O'Dorisio MS; Vassalo LM; Malarkey WB; O'Dorisio TM
    Regul Pept; 1985 Nov; 12(3):237-48. PubMed ID: 3001842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.