BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 16630584)

  • 1. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control.
    Bongianni F; Mutolo D; Nardone F; Pantaleo T
    Brain Res; 2006 May; 1090(1):134-45. PubMed ID: 16630584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic inhibition in the isolated respiratory network of neonatal rats.
    Brockhaus J; Ballanyi K
    Eur J Neurosci; 1998 Dec; 10(12):3823-39. PubMed ID: 9875360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride homeostasis differentially affects GABA(A) receptor- and glycine receptor-mediated effects on spontaneous circuit activity in hippocampal cell culture.
    Wang W; Xu TL
    Neurosci Lett; 2006 Oct; 406(1-2):11-6. PubMed ID: 16905250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory responses induced by blockades of GABA and glycine receptors within the Bötzinger complex and the pre-Bötzinger complex of the rabbit.
    Bongianni F; Mutolo D; Cinelli E; Pantaleo T
    Brain Res; 2010 Jul; 1344():134-47. PubMed ID: 20483350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat.
    Iizuka M
    J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse.
    Paton JF; Richter DW
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of rat superficial superior colliculus neurones: firing properties and sensitivity to GABA.
    Edwards MD; White AM; Platt B
    Neuroscience; 2002; 110(1):93-104. PubMed ID: 11882375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group I and II metabotropic glutamate receptors modulate respiratory activity in the lamprey.
    Bongianni F; Mutolo D; Carfì M; Pantaleo T
    Eur J Neurosci; 2002 Aug; 16(3):454-60. PubMed ID: 12193188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential ontogeny of GABA(B)-receptor-mediated pre- and postsynaptic modulation of GABA and glycine transmission in respiratory rhythm-generating network in mouse.
    Zhang W; Barnbrock A; Gajic S; Pfeiffer A; Ritter B
    J Physiol; 2002 Apr; 540(Pt 2):435-46. PubMed ID: 11956334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory control of ascending glutamatergic projections to the lamprey respiratory rhythm generator.
    Cinelli E; Mutolo D; Contini M; Pantaleo T; Bongianni F
    Neuroscience; 2016 Jun; 326():126-140. PubMed ID: 27058146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission.
    Shao XM; Feldman JL
    J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of synaptic inhibition in turtle respiratory rhythm generation.
    Johnson SM; Wilkerson JE; Wenninger MR; Henderson DR; Mitchell GS
    J Physiol; 2002 Oct; 544(Pt 1):253-65. PubMed ID: 12356896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABAAergic and glycinergic inhibition in the phrenic nucleus organizes and couples fast oscillations in motor output.
    Marchenko V; Rogers RF
    J Neurophysiol; 2009 Apr; 101(4):2134-45. PubMed ID: 19225173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABA(B) modulation of GABA(A) and glycine receptor-mediated synaptic currents in hypoglossal motoneurons.
    O'Brien JA; Sebe JY; Berger AJ
    Respir Physiol Neurobiol; 2004 Jul; 141(1):35-45. PubMed ID: 15234674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana.
    Galante RJ; Kubin L; Fishman AP; Pack AI
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):545-58. PubMed ID: 9019549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Stein RB
    Exp Brain Res; 1999 Nov; 129(2):172-84. PubMed ID: 10591891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbations of Respiratory Rhythm and Pattern by Disrupting Synaptic Inhibition within Pre-Bötzinger and Bötzinger Complexes.
    Marchenko V; Koizumi H; Mosher B; Koshiya N; Tariq MF; Bezdudnaya TG; Zhang R; Molkov YI; Rybak IA; Smith JC
    eNeuro; 2016; 3(2):. PubMed ID: 27200412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycinergic inhibition creates a form of auditory spectral integration in nuclei of the lateral lemniscus.
    Peterson DC; Nataraj K; Wenstrup J
    J Neurophysiol; 2009 Aug; 102(2):1004-16. PubMed ID: 19515958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.