BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16631271)

  • 1. Characterization of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids.
    Yamagata T; Morishita M; Kavimandan NJ; Nakamura K; Fukuoka Y; Takayama K; Peppas NA
    J Control Release; 2006 May; 112(3):343-9. PubMed ID: 16631271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination Strategy with Complexation Hydrogels and Cell-Penetrating Peptides for Oral Delivery of Insulin.
    Fukuoka Y; Khafagy ES; Goto T; Kamei N; Takayama K; Peppas NA; Takeda-Morishita M
    Biol Pharm Bull; 2018; 41(5):811-814. PubMed ID: 29709919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro release behavior and stability of insulin in complexation hydrogels as oral drug delivery carriers.
    Kim B; Peppas NA
    Int J Pharm; 2003 Nov; 266(1-2):29-37. PubMed ID: 14559391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models.
    Wood KM; Stone GM; Peppas NA
    Acta Biomater; 2010 Jan; 6(1):48-56. PubMed ID: 19481619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery.
    Wood KM; Stone GM; Peppas NA
    Biomacromolecules; 2008 Apr; 9(4):1293-8. PubMed ID: 18330990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel complexation hydrogels for oral peptide delivery: in vitro evaluation of their cytocompatibility and insulin-transport enhancing effects using Caco-2 cell monolayers.
    Ichikawa H; Peppas NA
    J Biomed Mater Res A; 2003 Nov; 67(2):609-17. PubMed ID: 14566804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexation hydrogels for intestinal delivery of interferon beta and calcitonin.
    Kamei N; Morishita M; Chiba H; Kavimandan NJ; Peppas NA; Takayama K
    J Control Release; 2009 Mar; 134(2):98-102. PubMed ID: 19095021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexation hydrogels for oral insulin delivery: effects of polymer dosing on in vivo efficacy.
    Tuesca A; Nakamura K; Morishita M; Joseph J; Peppas N; Lowman A
    J Pharm Sci; 2008 Jul; 97(7):2607-18. PubMed ID: 17876768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New terpolymers as hydrogels for oral protein delivery application.
    Mahkam M
    J Drug Target; 2009 Jan; 17(1):29-35. PubMed ID: 19016070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption.
    Morishita M; Goto T; Peppas NA; Joseph JI; Torjman MC; Munsick C; Nakamura K; Yamagata T; Takayama K; Lowman AM
    J Control Release; 2004 May; 97(1):115-24. PubMed ID: 15147809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEGylated insulin loaded complexation hydrogels for protected oral delivery.
    Coolich MK; Lanier OL; Cisneros E; Peppas NA
    J Control Release; 2023 Dec; 364():216-226. PubMed ID: 37890591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of pH-responsive polymers to oral dosage forms for insulin].
    Morishita M; Takayama K
    Nihon Rinsho; 2001 Nov; 59(11):2255-60. PubMed ID: 11712416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats.
    Morishita M; Goto T; Nakamura K; Lowman AM; Takayama K; Peppas NA
    J Control Release; 2006 Feb; 110(3):587-94. PubMed ID: 16325951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gastrointestinal transit and mucoadhesive characteristics of complexation hydrogels in rats.
    Goto T; Morishita M; Kavimandan NJ; Takayama K; Peppas NA
    J Pharm Sci; 2006 Feb; 95(2):462-9. PubMed ID: 16381013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ester amide) blend microspheres for oral insulin delivery.
    He P; Liu H; Tang Z; Deng M; Yang Y; Pang X; Chen X
    Int J Pharm; 2013 Oct; 455(1-2):259-66. PubMed ID: 23876502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids.
    Perakslis E; Tuesca A; Lowman A
    J Biomater Sci Polym Ed; 2007; 18(12):1475-90. PubMed ID: 17988515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.
    Nakamura K; Murray RJ; Joseph JI; Peppas NA; Morishita M; Lowman AM
    J Control Release; 2004 Mar; 95(3):589-99. PubMed ID: 15023469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition.
    Madsen F; Peppas NA
    Biomaterials; 1999 Sep; 20(18):1701-8. PubMed ID: 10503971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of poly (ethylene glycol) molecular weight and microparticle size on oral insulin delivery from P(MAA-g-EG) microparticles.
    López JE; Peppas NA
    Drug Dev Ind Pharm; 2004 May; 30(5):497-504. PubMed ID: 15244085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.