These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 1663159)
1. Dependence of cytosolic calcium in differentiating rat pheochromocytoma cells on calcium channels and intracellular stores. Reber BF; Reuter H J Physiol; 1991 Apr; 435():145-62. PubMed ID: 1663159 [TBL] [Abstract][Full Text] [Related]
2. Unidirectional interaction between two intracellular calcium stores in rat phaeochromocytoma (PC12) cells. Reber BF; Stucki JW; Reuter H J Physiol; 1993 Aug; 468():711-27. PubMed ID: 8254531 [TBL] [Abstract][Full Text] [Related]
3. Differential expression by nerve growth factor of two types of Ca2+ channels in rat phaeochromocytoma cell lines. Usowicz MM; Porzig H; Becker C; Reuter H J Physiol; 1990 Jul; 426():95-116. PubMed ID: 2172518 [TBL] [Abstract][Full Text] [Related]
4. Selective changes in cell bodies and growth cones of nerve growth factor-differentiated PC12 cells induced by chemical hypoxia. Gibson G; Toral-Barza L; Zhang H J Neurochem; 1997 Aug; 69(2):603-11. PubMed ID: 9231717 [TBL] [Abstract][Full Text] [Related]
5. Increases in intracellular calcium ion concentration during depolarization of cultured embryonic Xenopus spinal neurones. Barish ME J Physiol; 1991 Dec; 444():545-65. PubMed ID: 1668350 [TBL] [Abstract][Full Text] [Related]
6. Maitotoxin-induced intracellular calcium rise in PC12 cells: involvement of dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels and phosphoinositide breakdown. Meucci O; Grimaldi M; Scorziello A; Govoni S; Bergamaschi S; Yasumoto T; Schettini G J Neurochem; 1992 Aug; 59(2):679-88. PubMed ID: 1378490 [TBL] [Abstract][Full Text] [Related]
7. Potassium depolarization elevates cytosolic free calcium concentration in rat anterior pituitary cells through 1,4-dihydropyridine-sensitive, omega-conotoxin-insensitive calcium channels. Meier K; Knepel W; Schöfl C Endocrinology; 1988 Jun; 122(6):2764-70. PubMed ID: 2453348 [TBL] [Abstract][Full Text] [Related]
8. Voltage-sensitive calcium flux into bovine chromaffin cells occurs through dihydropyridine-sensitive and dihydropyridine- and omega-conotoxin-insensitive pathways. Rosario LM; Soria B; Feuerstein G; Pollard HB Neuroscience; 1989; 29(3):735-47. PubMed ID: 2739907 [TBL] [Abstract][Full Text] [Related]
9. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor. Islam MS; Larsson O; Nilsson T; Berggren PO Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):679-86. PubMed ID: 7702559 [TBL] [Abstract][Full Text] [Related]
11. Characterization of interactions of methylmercury with Ca2+ channels in synaptosomes and pheochromocytoma cells: radiotracer flux and binding studies. Shafer TJ; Contreras ML; Atchison WD Mol Pharmacol; 1990 Jul; 38(1):102-13. PubMed ID: 2164628 [TBL] [Abstract][Full Text] [Related]
12. Functional IP3- and ryanodine-sensitive calcium stores in presynaptic varicosities of NG108-15 (rodent neuroblastoma x glioma hybrid) cells. Rondé P; Dougherty JJ; Nichols RA J Physiol; 2000 Dec; 529 Pt 2(Pt 2):307-19. PubMed ID: 11101642 [TBL] [Abstract][Full Text] [Related]
13. A caffeine- and ryanodine-sensitive intracellular Ca2+ store can act as a Ca2+ source and a Ca2+ sink in PC12 cells. Barry VA; Cheek TR Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):589-97. PubMed ID: 8002966 [TBL] [Abstract][Full Text] [Related]
14. Caffeine-induced calcium release from internal stores in cultured rat sensory neurons. Usachev Y; Shmigol A; Pronchuk N; Kostyuk P; Verkhratsky A Neuroscience; 1993 Dec; 57(3):845-59. PubMed ID: 8309540 [TBL] [Abstract][Full Text] [Related]
15. Caffeine-sensitive calcium stores in bovine adrenal chromaffin cells. Liu PS; Lin YJ; Kao LS J Neurochem; 1991 Jan; 56(1):172-7. PubMed ID: 1898965 [TBL] [Abstract][Full Text] [Related]
16. Sites of transmitter release and relation to intracellular Ca2+ in cultured sympathetic neurons. Przywara DA; Bhave SV; Chowdhury PS; Wakade TD; Wakade AR Neuroscience; 1993 Feb; 52(4):973-86. PubMed ID: 8450982 [TBL] [Abstract][Full Text] [Related]
17. Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Lipscombe D; Madison DV; Poenie M; Reuter H; Tsien RY; Tsien RW Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2398-402. PubMed ID: 2451249 [TBL] [Abstract][Full Text] [Related]
18. Store-operated Ca2+ influx and voltage-gated Ca2+ channels coupled to exocytosis in pheochromocytoma (PC12) cells. Taylor SC; Peers C J Neurochem; 1999 Aug; 73(2):874-80. PubMed ID: 10428087 [TBL] [Abstract][Full Text] [Related]
19. Loperamide blocks high-voltage-activated calcium channels and N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurons. Church J; Fletcher EJ; Abdel-Hamid K; MacDonald JF Mol Pharmacol; 1994 Apr; 45(4):747-57. PubMed ID: 8183255 [TBL] [Abstract][Full Text] [Related]
20. Functional expression of voltage-gated Na+ and Ca2+ channels during neuronal differentiation of PC12 cells with nerve growth factor or forskolin. Bouron A; Becker C; Porzig H Naunyn Schmiedebergs Arch Pharmacol; 1999 May; 359(5):370-7. PubMed ID: 10498286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]