BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16631809)

  • 1. Factors affecting outbreaks of high-density Cochlodinium polykrikoides red tides in the coastal seawaters around Yeosu and Tongyeong, Korea.
    Lee YS
    Mar Pollut Bull; 2006 Oct; 52(10):1249-59. PubMed ID: 16631809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting outbreaks of Cochlodinium polykrikoides blooms in coastal areas of Korea.
    Lee YS; Lee SY
    Mar Pollut Bull; 2006 Jun; 52(6):626-34. PubMed ID: 16678213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diurnal vertical migration of Cochlodinium polykrikoides during the red tide in Korean coastal sea waters.
    Kim YS; Jeong CS; Seong GT; Han IS; Lee YS
    J Environ Biol; 2010 Sep; 31(5):687-93. PubMed ID: 21387923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal and spatial characteristics of seawater and sediment at Youngil Bay, southeast coast of Korea.
    Lee M; Bae W; Chung J; Jung HS; Shim H
    Mar Pollut Bull; 2008; 57(6-12):325-34. PubMed ID: 18514230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blooms of Cochlodinium polykrikoides (Gymnodiniaceae) in the Gulf of California, Mexico.
    Gárate-Lizárraga I; López-Cortes DJ; Bustillos-Guzmán JJ; Hernández-Sandoval F
    Rev Biol Trop; 2004 Sep; 52 Suppl 1():51-8. PubMed ID: 17465117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outbreak conditions for Cochlodinium polykrikoides blooms in the southern coastal waters of Korea.
    Lee MO; Choi JH; Park IH
    Mar Environ Res; 2010 Aug; 70(2):227-38. PubMed ID: 20605204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved real-time PCR method for quantification of the abundance of all known ribotypes of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides by comparing 4 different preparation methods.
    Lee SY; Jeong HJ; Seong KA; Lim AS; Kim JH; Lee KH; Lee MJ; Jang SH
    Harmful Algae; 2017 Mar; 63():23-31. PubMed ID: 28366397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Presence of Cochlodinium catenatum (Gymnodiniales: Gymnodiniaceae) in red tides of Bahía de Banderas, Mexican Pacific].
    Cortés Lara Mde C; Cortés Altamirano R; Sierra-Beltrán AP
    Rev Biol Trop; 2004 Sep; 52 Suppl 1():35-49. PubMed ID: 17465116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential Cause of Decrease in Bloom Events of the Harmful Dinoflagellate
    Baek SH; Kim Y; Lee M; Ahn CY; Cho KH; Park BS
    Toxins (Basel); 2020 Jun; 12(6):. PubMed ID: 32545486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival and growth of Cochlodinium polykrikoides red tide after addition of yellow loess.
    Lee YS; Kim JD; Lim WA; Lee SG
    J Environ Biol; 2009 Nov; 30(6):929-32. PubMed ID: 20329384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.
    Cho ES; Moon SY; Shu YS; Hwang JD; Youn SH
    J Environ Biol; 2015 Sep; 36(5):1089-94. PubMed ID: 26521549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.
    Ahn YH; Shanmugam P; Lee JH; Kang YQ
    Mar Environ Res; 2006 Mar; 61(2):186-201. PubMed ID: 16256190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical processes leading to the development of an anomalously large Cochlodinium polykrikoides bloom in the East sea/Japan sea.
    Kim DW; Jo YH; Choi JK; Choi JG; Bi H
    Harmful Algae; 2016 May; 55():250-258. PubMed ID: 28073539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors controlling the origin of Cochlodinium polykrikoides blooms along the Goheung coast, South Korea.
    Lee MO; Kim JK; Kim BK
    Mar Pollut Bull; 2016 Dec; 113(1-2):165-175. PubMed ID: 27671844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocean warming along temperate western boundaries of the Northern Hemisphere promotes an expansion of Cochlodinium polykrikoides blooms.
    Griffith AW; Doherty OM; Gobler CJ
    Proc Biol Sci; 2019 Jun; 286(1904):20190340. PubMed ID: 31161913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of ichthyotoxic Cochlodinium polykrikoides using the mixotrophic dinoflagellate Alexandrium pohangense: A potential effective sustainable method.
    Lim AS; Jeong HJ; Kim JH; Lee SY
    Harmful Algae; 2017 Mar; 63():109-118. PubMed ID: 28366385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying rainfall effects in an arid Gulf of California coastal lagoon.
    Mendoza-Salgado RA; Lechuga-Devéze CH; Ortega-Rubio A
    J Environ Manage; 2005 Apr; 75(2):183-7. PubMed ID: 15763161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI).
    Noh JH; Kim W; Son SH; Ahn JH; Park YJ
    Harmful Algae; 2018 Mar; 73():129-137. PubMed ID: 29602501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth physiology of red-tide microorganisms.
    Iwasaki H
    Microbiol Sci; 1984 Oct; 1(7):179-82. PubMed ID: 6444119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survey of contamination of estrogenic chemicals in Japanese and Korean coastal waters using the wild grey mullet (Mugil cephalus).
    Aoki JY; Nagae M; Takao Y; Hara A; Lee YD; Yeo IK; Lim BS; Park CB; Soyano K
    Sci Total Environ; 2010 Jan; 408(3):660-5. PubMed ID: 19900700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.