BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16632368)

  • 1. Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition.
    Porter AE
    Micron; 2006; 37(8):681-8. PubMed ID: 16632368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants.
    Porter AE; Buckland T; Hing K; Best SM; Bonfield W
    J Biomed Mater Res A; 2006 Jul; 78(1):25-33. PubMed ID: 16596583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo.
    Porter AE; Botelho CM; Lopes MA; Santos JD; Best SM; Bonfield W
    J Biomed Mater Res A; 2004 Jun; 69(4):670-9. PubMed ID: 15162409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications.
    Porter AE; Best SM; Bonfield W
    J Biomed Mater Res A; 2004 Jan; 68(1):133-41. PubMed ID: 14661258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface.
    Porter AE; Patel N; Skepper JN; Best SM; Bonfield W
    Biomaterials; 2004 Jul; 25(16):3303-14. PubMed ID: 14980425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].
    Dawidowicz A; Pielka S; Paluch D; Kuryszko J; Staniszewska-Kuś J; Solski L
    Polim Med; 2005; 35(1):3-14. PubMed ID: 16050072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: characterization and in vivo evaluation.
    Zhang E; Zou C
    Acta Biomater; 2009 Jun; 5(5):1732-41. PubMed ID: 19217362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo.
    Xue W; Liu X; Zheng X; Ding C
    J Biomed Mater Res A; 2005 Sep; 74(4):553-61. PubMed ID: 16025491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular compatibility of bone-like apatite containing silicon species.
    Obata A; Kasuga T
    J Biomed Mater Res A; 2008 Apr; 85(1):140-4. PubMed ID: 17688246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of calcium phosphate (Ca-P) coatings on trabecular bone response: a histological study.
    Caulier H; van der Waerden JP; Paquay YC; Wolke JG; Kalk W; Naert I; Jansen JA
    J Biomed Mater Res; 1995 Sep; 29(9):1061-9. PubMed ID: 8567704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics.
    Bagambisa FB; Joos U; Schilli W
    J Biomed Mater Res; 1993 Aug; 27(8):1047-55. PubMed ID: 8408117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon-substituted calcium phosphates - a critical view.
    Bohner M
    Biomaterials; 2009 Nov; 30(32):6403-6. PubMed ID: 19695699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds.
    Hing KA; Revell PA; Smith N; Buckland T
    Biomaterials; 2006 Oct; 27(29):5014-26. PubMed ID: 16790272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals, and adhesive interactions.
    Vandiver J; Dean D; Patel N; Botelho C; Best S; Santos JD; Lopes MA; Bonfield W; Ortiz C
    J Biomed Mater Res A; 2006 Aug; 78(2):352-63. PubMed ID: 16646067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite.
    Itokawa H; Hiraide T; Moriya M; Fujimoto M; Nagashima G; Suzuki R; Fujimoto T
    Biomaterials; 2007 Nov; 28(33):4922-7. PubMed ID: 17707904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructure of the bone-cement and the bone-metal interface.
    Linder L
    Clin Orthop Relat Res; 1992 Mar; (276):147-56. PubMed ID: 1537145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite.
    Kilian O; Wenisch S; Karnati S; Baumgart-Vogt E; Hild A; Fuhrmann R; Jonuleit T; Dingeldein E; Schnettler R; Franke RP
    Biomaterials; 2008; 29(24-25):3429-37. PubMed ID: 18501961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone.
    Ni GX; Lu WW; Xu B; Chiu KY; Yang C; Li ZY; Lam WM; Luk KD
    Biomaterials; 2006 Oct; 27(29):5127-33. PubMed ID: 16781769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo.
    Damien E; Hing K; Saeed S; Revell PA
    J Biomed Mater Res A; 2003 Aug; 66(2):241-6. PubMed ID: 12888993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.