BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16632403)

  • 1. Study of the mechanisms of uptake of 5-aminolevulinic acid derivatives by PEPT1 and PEPT2 transporters as a tool to improve photodynamic therapy of tumours.
    Rodriguez L; Batlle A; Di Venosa G; MacRobert AJ; Battah S; Daniel H; Casas A
    Int J Biochem Cell Biol; 2006; 38(9):1530-9. PubMed ID: 16632403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications.
    Döring F; Walter J; Will J; Föcking M; Boll M; Amasheh S; Clauss W; Daniel H
    J Clin Invest; 1998 Jun; 101(12):2761-7. PubMed ID: 9637710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of 5-aminolevulinic acid derivatives and induced porphyrin kinetics in mice tissues.
    Di Venosa G; Batlle A; Fukuda H; Macrobert A; Casas A
    Cancer Chemother Pharmacol; 2006 Oct; 58(4):478-86. PubMed ID: 16485117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of 5-aminolevulinic acid ester uptake in mammalian cells.
    Rodriguez L; Batlle A; Di Venosa G; Battah S; Dobbin P; Macrobert AJ; Casas A
    Br J Pharmacol; 2006 Apr; 147(7):825-33. PubMed ID: 16432502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function.
    Döring F; Martini C; Walter J; Daniel H
    J Membr Biol; 2002 Mar; 186(2):55-62. PubMed ID: 11944083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodynamic therapy: regulation of porphyrin synthesis and hydrolysis from ALA esters.
    Di Venosa G; Fukuda H; Batlle A; Macrobert A; Casas A
    J Photochem Photobiol B; 2006 May; 83(2):129-36. PubMed ID: 16480890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of a novel dendritic derivative of 5-aminolaevulinic acid for photodynamic therapy.
    Di Venosa GM; Casas AG; Battah S; Dobbin P; Fukuda H; Macrobert AJ; Batlle A
    Int J Biochem Cell Biol; 2006 Jan; 38(1):82-91. PubMed ID: 16172016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy.
    Di Venosa G; Hermida L; Fukuda H; Defain MV; Rodriguez L; Mamone L; MacRobert A; Casas A; Batlle A
    J Photochem Photobiol B; 2009 Aug; 96(2):152-8. PubMed ID: 19560367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid in vitro screening for delivery of peptide-derived peptidase inhibitors as potential drug candidates via epithelial peptide transporters.
    Foltz M; Meyer A; Theis S; Demuth HU; Daniel H
    J Pharmacol Exp Ther; 2004 Aug; 310(2):695-702. PubMed ID: 15051798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delta-aminolevulinic acid transport in cancer cells of the human extrahepatic biliary duct.
    Neumann J; Brandsch M
    J Pharmacol Exp Ther; 2003 Apr; 305(1):219-24. PubMed ID: 12649372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of angiotensin-converting enzyme inhibitors by H+/peptide transporters revisited.
    Knütter I; Wollesky C; Kottra G; Hahn MG; Fischer W; Zebisch K; Neubert RH; Daniel H; Brandsch M
    J Pharmacol Exp Ther; 2008 Nov; 327(2):432-41. PubMed ID: 18713951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras.
    Fei YJ; Liu JC; Fujita T; Liang R; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1998 May; 246(1):39-44. PubMed ID: 9600064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1.
    Luckner P; Brandsch M
    Eur J Pharm Biopharm; 2005 Jan; 59(1):17-24. PubMed ID: 15567297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of a new and radiolabeled high-affinity substrate for H+/peptide cotransporters.
    Knütter I; Hartrodt B; Tóth G; Keresztes A; Kottra G; Mrestani-Klaus C; Born I; Daniel H; Neubert K; Brandsch M
    FEBS J; 2007 Nov; 274(22):5905-14. PubMed ID: 17944948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-affinity interaction of sartans with H+/peptide transporters.
    Knütter I; Kottra G; Fischer W; Daniel H; Brandsch M
    Drug Metab Dispos; 2009 Jan; 37(1):143-9. PubMed ID: 18824524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthesis and applications of 5-aminolevulinic acid (ALA) derivatives in photodynamic therapy and photodiagnosis.
    Dabrowski Z; Kwaśny M; Kamiński J; Bełdowicz M; Lewicka L; Obukowicz B; Kaliszewski M; Pirozyńska E
    Acta Pol Pharm; 2003; 60(3):219-24. PubMed ID: 14556493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of L-amino acid ester compounds by rat peptide transporters PEPT1 and PEPT2.
    Sawada K; Terada T; Saito H; Hashimoto Y; Inui KI
    J Pharmacol Exp Ther; 1999 Nov; 291(2):705-9. PubMed ID: 10525090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The renal type H+/peptide symporter PEPT2: structure-affinity relationships.
    Biegel A; Knütter I; Hartrodt B; Gebauer S; Theis S; Luckner P; Kottra G; Rastetter M; Zebisch K; Thondorf I; Daniel H; Neubert K; Brandsch M
    Amino Acids; 2006 Sep; 31(2):137-56. PubMed ID: 16868651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus.
    Novotny A; Xiang J; Stummer W; Teuscher NS; Smith DE; Keep RF
    J Neurochem; 2000 Jul; 75(1):321-8. PubMed ID: 10854277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport.
    Groneberg DA; Fischer A; Chung KF; Daniel H
    Am J Respir Cell Mol Biol; 2004 Mar; 30(3):251-60. PubMed ID: 14969997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.