These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 16633596)
1. Distributed memory parallel implementation of energies and gradients for second-order Møller-Plesset perturbation theory with the resolution-of-the-identity approximation. Hättig C; Hellweg A; Köhn A Phys Chem Chem Phys; 2006 Mar; 8(10):1159-69. PubMed ID: 16633596 [TBL] [Abstract][Full Text] [Related]
2. Application of second-order Møller-Plesset perturbation theory with resolution-of-identity approximation to periodic systems. Katouda M; Nagase S J Chem Phys; 2010 Nov; 133(18):184103. PubMed ID: 21073209 [TBL] [Abstract][Full Text] [Related]
3. A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory. Klopper W J Chem Phys; 2004 Jun; 120(23):10890-5. PubMed ID: 15268119 [TBL] [Abstract][Full Text] [Related]
4. Dual-basis second-order Moller-Plesset perturbation theory: A reduced-cost reference for correlation calculations. Steele RP; DiStasio RA; Shao Y; Kong J; Head-Gordon M J Chem Phys; 2006 Aug; 125(7):074108. PubMed ID: 16942323 [TBL] [Abstract][Full Text] [Related]
5. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis. Distasio RA; Steele RP; Rhee YM; Shao Y; Head-Gordon M J Comput Chem; 2007 Apr; 28(5):839-56. PubMed ID: 17219361 [TBL] [Abstract][Full Text] [Related]
6. Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation. Valeev EF; Janssen CL J Chem Phys; 2004 Jul; 121(3):1214-27. PubMed ID: 15260663 [TBL] [Abstract][Full Text] [Related]
7. The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient. Bykov D; Kristensen K; Kjærgaard T J Chem Phys; 2016 Jul; 145(2):024106. PubMed ID: 27421396 [TBL] [Abstract][Full Text] [Related]
8. Analytic calculation of first-order molecular properties at the explicitly correlated second-order Moller-Plesset level: basis-set limits for the molecular quadrupole moments of BH and HF. Kordel E; Villani C; Klopper W J Chem Phys; 2005 Jun; 122(21):214306. PubMed ID: 15974737 [TBL] [Abstract][Full Text] [Related]
9. Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. Schütz M; Werner HJ; Lindh R; Manby FR J Chem Phys; 2004 Jul; 121(2):737-50. PubMed ID: 15260600 [TBL] [Abstract][Full Text] [Related]
10. Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set. Marsman M; Grüneis A; Paier J; Kresse G J Chem Phys; 2009 May; 130(18):184103. PubMed ID: 19449904 [TBL] [Abstract][Full Text] [Related]
11. An efficient atomic orbital based second-order Møller-Plesset gradient program. Saebø S; Baker J; Wolinski K; Pulay P J Chem Phys; 2004 Jun; 120(24):11423-31. PubMed ID: 15268176 [TBL] [Abstract][Full Text] [Related]
12. A Resolution-Of-The-Identity Implementation of the Local Triatomics-In-Molecules Model for Second-Order Møller-Plesset Perturbation Theory with Application to Alanine Tetrapeptide Conformational Energies. DiStasio RA; Jung Y; Head-Gordon M J Chem Theory Comput; 2005 Sep; 1(5):862-76. PubMed ID: 26641903 [TBL] [Abstract][Full Text] [Related]
13. Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme. Del Ben M; Hutter J; VandeVondele J J Chem Theory Comput; 2013 Jun; 9(6):2654-71. PubMed ID: 26583860 [TBL] [Abstract][Full Text] [Related]
14. MPI/OpenMP hybrid parallel algorithm for resolution of identity second-order Møller-Plesset perturbation calculation of analytical energy gradient for massively parallel multicore supercomputers. Katouda M; Nakajima T J Comput Chem; 2017 Mar; 38(8):489-507. PubMed ID: 28133838 [TBL] [Abstract][Full Text] [Related]
16. A kinetic energy fitting metric for resolution of the identity second-order Møller-Plesset perturbation theory. Lambrecht DS; Brandhorst K; Miller WH; McCurdy CW; Head-Gordon M J Phys Chem A; 2011 Apr; 115(13):2794-801. PubMed ID: 21391690 [TBL] [Abstract][Full Text] [Related]
17. DIESEL-MP2: a new program to perform large-scale multireference-MP2 computations. Musch P; Engels B J Comput Chem; 2006 Jul; 27(10):1055-62. PubMed ID: 16685716 [TBL] [Abstract][Full Text] [Related]
18. Communication: A new approach to dual-basis second-order Møller-Plesset calculations. Deng J; Gill PM J Chem Phys; 2011 Feb; 134(8):081103. PubMed ID: 21361520 [TBL] [Abstract][Full Text] [Related]
19. An atomic orbital-based reformulation of energy gradients in second-order Møller-Plesset perturbation theory. Schweizer S; Doser B; Ochsenfeld C J Chem Phys; 2008 Apr; 128(15):154101. PubMed ID: 18433184 [TBL] [Abstract][Full Text] [Related]
20. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. Fedorov DG; Kitaura K J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]