These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16633667)

  • 1. UV induced local heating effects in TiO2 nanocrystals.
    Berger T; Diwald O; Knözinger E; Sterrer M; Yates JT
    Phys Chem Chem Phys; 2006 Apr; 8(15):1822-6. PubMed ID: 16633667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge trapping and photoadsorption of O2 on dehydroxylated TiO2 nanocrystals--an electron paramagnetic resonance study.
    Berger T; Sterrer M; Diwald O; Knözinger E
    Chemphyschem; 2005 Oct; 6(10):2104-12. PubMed ID: 16208752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced charge separation in anatase TiO2 particles.
    Berger T; Sterrer M; Diwald O; Knözinger E; Panayotov D; Thompson TL; Yates JT
    J Phys Chem B; 2005 Apr; 109(13):6061-8. PubMed ID: 16851666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and photoelectronic properties of layered titanate nanostructures.
    Riss A; Elser MJ; Bernardi J; Diwald O
    J Am Chem Soc; 2009 May; 131(17):6198-206. PubMed ID: 19358537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: a probe to evaluate the role of crystal facets in photocatalytic processes.
    D'Arienzo M; Carbajo J; Bahamonde A; Crippa M; Polizzi S; Scotti R; Wahba L; Morazzoni F
    J Am Chem Soc; 2011 Nov; 133(44):17652-61. PubMed ID: 21970524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.
    Panigrahi S; Basak D
    Nanoscale; 2011 May; 3(5):2336-41. PubMed ID: 21483939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature kinetics and energetics of the electron and hole traps in irradiated TiO2 nanoparticles as revealed by EPR spectroscopy.
    Ke SC; Wang TC; Wong MS; Gopal NO
    J Phys Chem B; 2006 Jun; 110(24):11628-34. PubMed ID: 16800456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible switching on superhydrophobic TiO2 nano-strawberry films fabricated at low temperature.
    Sun W; Zhou S; Chen P; Peng L
    Chem Commun (Camb); 2008 Feb; (5):603-5. PubMed ID: 18209803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity.
    Sun L; Zhao Z; Zhou Y; Liu L
    Nanoscale; 2012 Jan; 4(2):613-20. PubMed ID: 22159272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced charge separation in titania nanotubes.
    Tachikawa T; Tojo S; Fujitsuka M; Sekino T; Majima T
    J Phys Chem B; 2006 Jul; 110(29):14055-9. PubMed ID: 16854100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide.
    Williams G; Seger B; Kamat PV
    ACS Nano; 2008 Jul; 2(7):1487-91. PubMed ID: 19206319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV-irradiation-induced bioactivity on TiO2 coatings with nanostructural surface.
    Liu X; Zhao X; Li B; Cao C; Dong Y; Ding C; Chu PK
    Acta Biomater; 2008 May; 4(3):544-52. PubMed ID: 18314402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A potential site for trapping photogenerated holes on rutile TiO(2) surface as revealed by EPR spectroscopy: an avenue for enhancing photocatalytic activity.
    Gopal NO; Lo HH; Sheu SC; Ke SC
    J Am Chem Soc; 2010 Aug; 132(32):10982-3. PubMed ID: 20698649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between the effects of TiO2 synthesized by photoassisted and conventional sol-gel methods on the photochromism of WO3 colloids.
    He T; Ma Y; Cao Y; Liu H; Yang W; Yao J
    J Colloid Interface Sci; 2004 Nov; 279(1):117-23. PubMed ID: 15380419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses.
    Fenoglio I; Greco G; Livraghi S; Fubini B
    Chemistry; 2009; 15(18):4614-21. PubMed ID: 19291716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies.
    Liu B; Wang X; Cai G; Wen L; Song Y; Zhao X
    J Hazard Mater; 2009 Sep; 169(1-3):1112-8. PubMed ID: 19500906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained production of H2O2 on irradiated TiO2- fluoride systems.
    Maurino V; Minero C; Mariella G; Pelizzetti E
    Chem Commun (Camb); 2005 May; (20):2627-9. PubMed ID: 15900349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic properties of trapped electrons on the surface of MgO nanoparticles.
    Sterrer M; Berger T; Stankic S; Diwald O; Knözinger E
    Chemphyschem; 2004 Nov; 5(11):1695-703. PubMed ID: 15580929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel nanostructured pHEMA-TiO2 hybrid materials with efficient light-induced charge separation.
    Gorbovyi P; Uklein A; Tieng S; Brinza O; Traore M; Chhor K; Museur L; Kanaev A
    Nanoscale; 2011 Apr; 3(4):1807-12. PubMed ID: 21399793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.