BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1663375)

  • 1. Proton-coupled solute transport in the animal cell plasma membrane.
    Ganapathy V; Leibach FH
    Curr Opin Cell Biol; 1991 Aug; 3(4):695-701. PubMed ID: 1663375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is intestinal peptide transport energized by a proton gradient?
    Ganapathy ; Leibach FH
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G153-60. PubMed ID: 2992286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney.
    Saito H; Okuda M; Terada T; Sasaki S; Inui K
    J Pharmacol Exp Ther; 1995 Dec; 275(3):1631-7. PubMed ID: 8531138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide transport across the animal cell plasma membrane: recent developments.
    Ganapathy V; Miyamoto Y; Tiruppathi C; Leibach FH
    Indian J Biochem Biophys; 1991; 28(5-6):317-23. PubMed ID: 1812062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport.
    Thwaites DT; Simmons NL; Hirst BH
    Pharm Res; 1993 May; 10(5):667-73. PubMed ID: 8391693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-coupled transport of organic solutes in animal cell membranes and its relation to Na+ transport.
    Hoshi T
    Jpn J Physiol; 1985; 35(2):179-91. PubMed ID: 2995712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of identical binding polypeptides for cephalosporins and dipeptides in intestinal brush-border membrane vesicles by photoaffinity labeling.
    Kramer W
    Biochim Biophys Acta; 1987 Nov; 905(1):65-74. PubMed ID: 3676315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles.
    Rajendran VM; Berteloot A; Ramaswamy K
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G682-6. PubMed ID: 4003548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydrogen ion-gradient on carrier-mediated transport of glycylglycine across brush border membrane vesicles from rabbit small intestine.
    Takuwa N; Shimada T; Matsumoto H; Himukai M; Hoshi T
    Jpn J Physiol; 1985; 35(4):629-42. PubMed ID: 4068369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of dibucaine and calcium ion on a calcium pump reconstituted from defined components of intestinal brush border.
    Kurebe M
    Mol Pharmacol; 1978 Jan; 14(1):138-44. PubMed ID: 146822
    [No Abstract]   [Full Text] [Related]  

  • 11. Intestinal absorption of peptides.
    Matthews DM
    Physiol Rev; 1975 Oct; 55(4):537-608. PubMed ID: 1103167
    [No Abstract]   [Full Text] [Related]  

  • 12. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes.
    Inui K; Tomita Y; Katsura T; Okano T; Takano M; Hori R
    J Pharmacol Exp Ther; 1992 Feb; 260(2):482-6. PubMed ID: 1738097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression cloning of a mammalian proton-coupled oligopeptide transporter.
    Fei YJ; Kanai Y; Nussberger S; Ganapathy V; Leibach FH; Romero MF; Singh SK; Boron WF; Hediger MA
    Nature; 1994 Apr; 368(6471):563-6. PubMed ID: 8139693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitors of the proton-sucrose symport.
    Bush DR
    Arch Biochem Biophys; 1993 Dec; 307(2):355-60. PubMed ID: 8274022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium chloride transport pathways in intestinal membrane vesicles.
    Hopfer U
    Methods Enzymol; 1990; 192():389-408. PubMed ID: 2074800
    [No Abstract]   [Full Text] [Related]  

  • 16. Energy transduction and solute transport in streptococci.
    Konings WN; Otto R
    Antonie Van Leeuwenhoek; 1983 Sep; 49(3):247-57. PubMed ID: 6312880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the small intestinal uptake of phenylalanylglycine via a H+/oligopeptide transport system by chemical modification with fatty acids.
    Fujita T; Morishita Y; Ito H; Kuribayashi D; Yamamoto A; Muranishi S
    Life Sci; 1997; 61(25):2455-65. PubMed ID: 9416764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driving force for peptide transport in mammalian intestine and kidney.
    Ganapathy V; Miyamoto Y; Leibach FH
    Beitr Infusionther Klin Ernahr; 1987; 17():54-68. PubMed ID: 3318802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs.
    Erickson RH; Gum JR; Lindstrom MM; McKean D; Kim YS
    Biochem Biophys Res Commun; 1995 Nov; 216(1):249-57. PubMed ID: 7488096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption of intact peptides: studies on transport of protein digests and dipeptides across rat small intestine in vitro.
    Gardner ML
    Q J Exp Physiol; 1982 Oct; 67(4):629-37. PubMed ID: 7156317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.