BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

738 related articles for article (PubMed ID: 16634489)

  • 1. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis.
    Chun HJ; Shin HS; Han CH; Lee SH
    Int J Oral Maxillofac Implants; 2006; 21(2):195-202. PubMed ID: 16634489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone.
    Quaresma SE; Cury PR; Sendyk WR; Sendyk C
    J Oral Implantol; 2008; 34(1):1-6. PubMed ID: 18390236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of platform switching on implant crest bone stress: a finite element analysis.
    Schrotenboer J; Tsao YP; Kinariwala V; Wang HL
    Implant Dent; 2009 Jun; 18(3):260-9. PubMed ID: 19509536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic natures of implant loading.
    Wang RF; Kang B; Lang LA; Razzoog ME
    J Prosthet Dent; 2009 Jun; 101(6):359-71. PubMed ID: 19463663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical aspects of bone-level diameter shifting at implant-abutment interface.
    Canay S; Akça K
    Implant Dent; 2009 Jun; 18(3):239-48. PubMed ID: 19509534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional finite element stress analysis of a cuneiform-geometry implant.
    Cruz M; Wassall T; Toledo EM; Barra LP; Lemonge AC
    Int J Oral Maxillofac Implants; 2003; 18(5):675-84. PubMed ID: 14579955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis.
    Huang HL; Fuh LJ; Ko CC; Hsu JT; Chen CC
    Int J Oral Maxillofac Implants; 2009; 24(3):455-62. PubMed ID: 19587867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of effect of prosthesis height, angle of force application, and implant offset on supporting bone.
    Sütpideler M; Eckert SE; Zobitz M; An KN
    Int J Oral Maxillofac Implants; 2004; 19(6):819-25. PubMed ID: 15623056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platform switching: biomechanical evaluation using three-dimensional finite element analysis.
    Tabata LF; Rocha EP; Barão VA; Assunção WG
    Int J Oral Maxillofac Implants; 2011; 26(3):482-91. PubMed ID: 21691594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force transmission of one- and two-piece morse-taper oral implants: a nonlinear finite element analysis.
    Cehreli MC; Akça K; Iplikçioğlu H
    Clin Oral Implants Res; 2004 Aug; 15(4):481-9. PubMed ID: 15248884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dental implant cross-sectional design on cortical bone structure using finite element analysis.
    Abu-Hammad O; Khraisat A; Dar-Odeh N; El-Maaytah M
    Clin Implant Dent Relat Res; 2007 Dec; 9(4):217-21. PubMed ID: 18031443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.
    Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G
    J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of abutment angulation on micromotion level for immediately loaded dental implants: a 3-D finite element analysis.
    Kao HC; Gung YW; Chung TF; Hsu ML
    Int J Oral Maxillofac Implants; 2008; 23(4):623-30. PubMed ID: 18807557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone-implant interface with simulated insertion stress around an immediately loaded dental implant in the anterior maxilla: a three-dimensional finite element analysis.
    Lee JS; Cho IH; Kim YS; Heo SJ; Kwon HB; Lim YJ
    Int J Oral Maxillofac Implants; 2012; 27(2):295-302. PubMed ID: 22442767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of implant diameter, insertion depth, and loading angle on stress/strain fields in implant/jawbone systems: finite element analysis.
    Qian L; Todo M; Matsushita Y; Koyano K
    Int J Oral Maxillofac Implants; 2009; 24(5):877-86. PubMed ID: 19865628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of internal tapered abutment designs on bone stresses around a dental implant: three-dimensional finite element method with statistical evaluation.
    Chu CM; Huang HL; Hsu JT; Fuh LJ
    J Periodontol; 2012 Jan; 83(1):111-8. PubMed ID: 21563947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical response of implant systems placed in the maxillary posterior region under various conditions of angulation, bone density, and loading.
    Lin CL; Wang JC; Ramp LC; Liu PR
    Int J Oral Maxillofac Implants; 2008; 23(1):57-64. PubMed ID: 18416413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of finite element analysis to model bone-implant contact with basal implants.
    Ihde S; Goldmann T; Himmlova L; Aleksic Z
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 Jul; 106(1):39-48. PubMed ID: 18439855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis.
    Ding X; Zhu XH; Liao SH; Zhang XH; Chen H
    J Prosthodont; 2009 Jul; 18(5):393-402. PubMed ID: 19374710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis.
    Kong L; Hu K; Li D; Song Y; Yang J; Wu Z; Liu B
    Int J Oral Maxillofac Implants; 2008; 23(1):65-74. PubMed ID: 18416414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.