These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16634624)

  • 1. Proton movement and photointermediate kinetics in rhodopsin mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2006 May; 45(17):5430-9. PubMed ID: 16634624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2004 Oct; 43(39):12614-21. PubMed ID: 15449951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH dependence of photolysis intermediates in the photoactivation of rhodopsin mutant E113Q.
    Lewis JW; Szundi I; Fu WY; Sakmar TP; Kliger DS
    Biochemistry; 2000 Jan; 39(3):599-606. PubMed ID: 10642185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin.
    Jäger F; Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic evidence for interaction between transmembrane helices 3 and 5 in rhodopsin.
    Beck M; Sakmar TP; Siebert F
    Biochemistry; 1998 May; 37(20):7630-9. PubMed ID: 9585578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transfer reactions linked to rhodopsin activation.
    Szundi I; Mah TL; Lewis JW; Jäger S; Ernst OP; Hofmann KP; Kliger DS
    Biochemistry; 1998 Oct; 37(40):14237-44. PubMed ID: 9760262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsecond time-resolved circular dichroism of rhodopsin photointermediates.
    Thomas YG; Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2009 Dec; 48(51):12283-9. PubMed ID: 19905009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and pH dependence of light-induced deprotonation of the Schiff base of rhodopsin: possible coupling to proton uptake and formation of the active form of Meta II.
    Kuwata O; Yuan C; Misra S; Govindjee R; Ebrey TG
    Biochemistry (Mosc); 2001 Nov; 66(11):1283-99. PubMed ID: 11743873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA; Min KC; Beck M; Sakmar TP
    J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Photochem Photobiol; 1992 Dec; 56(6):1135-44. PubMed ID: 1337214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy.
    Pan D; Mathies RA
    Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis.
    Janz JM; Farrens DL
    J Biol Chem; 2004 Dec; 279(53):55886-94. PubMed ID: 15475355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix.
    Lin SW; Sakmar TP; Franke RR; Khorana HG; Mathies RA
    Biochemistry; 1992 Jun; 31(22):5105-11. PubMed ID: 1351402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two intermediates appear on the lumirhodopsin time scale after rhodopsin photoexcitation.
    Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2003 May; 42(17):5091-8. PubMed ID: 12718552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin.
    Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A
    Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin.
    Arnis S; Fahmy K; Hofmann KP; Sakmar TP
    J Biol Chem; 1994 Sep; 269(39):23879-81. PubMed ID: 7929034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes in the lumirhodopsin-to-metarhodopsin I conversion of air-dried bovine rhodopsin.
    Nishimura S; Sasaki J; Kandori H; Lugtenburg J; Maeda A
    Biochemistry; 1995 Dec; 34(51):16758-63. PubMed ID: 8527450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.