These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1032 related articles for article (PubMed ID: 1663538)

  • 1. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.
    Traub RD; Wong RK; Miles R; Michelson H
    J Neurophysiol; 1991 Aug; 66(2):635-50. PubMed ID: 1663538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea-pig hippocampus.
    Wong RK; Stewart M
    J Physiol; 1992 Nov; 457():675-87. PubMed ID: 1297848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmental models of type A and type B guinea pig medial vestibular neurons.
    Quadroni R; Knöpfel T
    J Neurophysiol; 1994 Oct; 72(4):1911-24. PubMed ID: 7529823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.
    Magee JC; Carruth M
    J Neurophysiol; 1999 Oct; 82(4):1895-901. PubMed ID: 10515978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation.
    Warman EN; Durand DM; Yuen GL
    J Neurophysiol; 1994 Jun; 71(6):2033-45. PubMed ID: 7523610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A branching dendritic model of a rodent CA3 pyramidal neurone.
    Traub RD; Jefferys JG; Miles R; Whittington MA; Tóth K
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):79-95. PubMed ID: 7853251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulations of morphologically reconstructed CA3 hippocampal neurons.
    Migliore M; Cook EP; Jaffe DB; Turner DA; Johnston D
    J Neurophysiol; 1995 Mar; 73(3):1157-68. PubMed ID: 7608762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events.
    Spruston N; Jaffe DB; Williams SH; Johnston D
    J Neurophysiol; 1993 Aug; 70(2):781-802. PubMed ID: 8410172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of ionic currents to magnetoencephalography (MEG) and electroencephalography (EEG) signals generated by guinea-pig CA3 slices.
    Murakami S; Hirose A; Okada YC
    J Physiol; 2003 Dec; 553(Pt 3):975-85. PubMed ID: 14528026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus.
    Traub RD; Miles R; Buzsáki G
    J Physiol; 1992; 451():653-72. PubMed ID: 1403830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of intrinsic bursting in CA3 hippocampal neurons.
    Traub RD
    Neuroscience; 1982 May; 7(5):1233-42. PubMed ID: 7110586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements.
    Jaffe DB; Ross WN; Lisman JE; Lasser-Ross N; Miyakawa H; Johnston D
    J Neurophysiol; 1994 Mar; 71(3):1065-77. PubMed ID: 8201402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites.
    Reuveni I; Friedman A; Amitai Y; Gutnick MJ
    J Neurosci; 1993 Nov; 13(11):4609-21. PubMed ID: 8229187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment.
    Booth V; Rinzel J; Kiehn O
    J Neurophysiol; 1997 Dec; 78(6):3371-85. PubMed ID: 9405551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium coding and adaptive temporal computation in cortical pyramidal neurons.
    Wang XJ
    J Neurophysiol; 1998 Mar; 79(3):1549-66. PubMed ID: 9497431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic and intrinsic conductances shape picrotoxin-induced synchronized after-discharges in the guinea-pig hippocampal slice.
    Traub RD; Miles R; Jefferys JG
    J Physiol; 1993 Feb; 461():525-47. PubMed ID: 8350274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of gamma frequency burst discharge generated by conditional backpropagation.
    Doiron B; Longtin A; Turner RW; Maler L
    J Neurophysiol; 2001 Oct; 86(4):1523-45. PubMed ID: 11600618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional spike backpropagation generates burst discharge in a sensory neuron.
    Lemon N; Turner RW
    J Neurophysiol; 2000 Sep; 84(3):1519-30. PubMed ID: 10980024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.