These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 16635569)

  • 1. Microsystem for transfection of exogenous molecules with spatio-temporal control into adherent cells.
    Jain T; Muthuswamy J
    Biosens Bioelectron; 2007 Jan; 22(6):863-70. PubMed ID: 16635569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-chip for spatially controlled transfection of nucleic acid payloads into cells in a culture.
    Jain T; Muthuswamy J
    Lab Chip; 2007 Aug; 7(8):1004-11. PubMed ID: 17653342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three dimensional electrode array for cell lysis via electroporation.
    Lu KY; Wo AM; Lo YJ; Chen KC; Lin CM; Yang CR
    Biosens Bioelectron; 2006 Oct; 22(4):568-74. PubMed ID: 16997544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrotransfection of mammalian cells using microchannel-type electroporation chip.
    Shin YS; Cho K; Kim JK; Lim SH; Park CH; Lee KB; Park Y; Chung C; Han DC; Chang JK
    Anal Chem; 2004 Dec; 76(23):7045-52. PubMed ID: 15571358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time electroporation control for accurate and safe in vivo non-viral gene therapy.
    Cukjati D; Batiuskaite D; André F; Miklavcic D; Mir LM
    Bioelectrochemistry; 2007 May; 70(2):501-7. PubMed ID: 17258942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic device for electrofusion of biological vesicles.
    Tresset G; Takeuchi S
    Biomed Microdevices; 2004 Sep; 6(3):213-8. PubMed ID: 15377830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic control of extracellular environment in in vitro neural recording systems.
    Pearce TM; Williams JJ; Kruzel SP; Gidden MJ; Williams JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):207-12. PubMed ID: 16003901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin-film IrOx pH microelectrode for microfluidic-based microsystems.
    Ges IA; Ivanov BL; Schaffer DK; Lima EA; Werdich AA; Baudenbacher FJ
    Biosens Bioelectron; 2005 Aug; 21(2):248-56. PubMed ID: 16023951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microelectrode array (MEA) platform for targeted neuronal transfection and recording.
    Jain T; Muthuswamy J
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 2):827-32. PubMed ID: 18270028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroporation of mammalian cells in a microfluidic channel with geometric variation.
    Wang HY; Lu C
    Anal Chem; 2006 Jul; 78(14):5158-64. PubMed ID: 16841942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroporation based on hydrodynamic focusing of microfluidics with low dc voltage.
    Zhu T; Luo C; Huang J; Xiong C; Ouyang Q; Fang J
    Biomed Microdevices; 2010 Feb; 12(1):35-40. PubMed ID: 19757070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement.
    Lin YC; Li M; Wu CC
    Lab Chip; 2004 Apr; 4(2):104-8. PubMed ID: 15052348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single cell electroporation using microfluidic devices.
    Le Gac S; van den Berg A
    Methods Mol Biol; 2012; 853():65-82. PubMed ID: 22323141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons.
    Claverol-Tinturé E; Ghirardi M; Fiumara F; Rosell X; Cabestany J
    J Neural Eng; 2005 Jun; 2(2):L1-7. PubMed ID: 15928406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micronozzle array enhanced sandwich electroporation of embryonic stem cells.
    Fei Z; Hu X; Choi HW; Wang S; Farson D; Lee LJ
    Anal Chem; 2010 Jan; 82(1):353-8. PubMed ID: 19961232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conceptual design of integrated microfluidic system for magnetic cell separation, electroporation, and transfection.
    Durdík Š; Krafčík A; Babincová M; Babinec P
    Phys Med; 2013 Sep; 29(5):562-7. PubMed ID: 23260767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High efficiency, site-specific transfection of adherent cells with siRNA using microelectrode arrays (MEA).
    Patel C; Muthuswamy J
    J Vis Exp; 2012 Sep; (67):e4415. PubMed ID: 23007885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.