These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 1663559)
1. The evolution of rhodopsins and neurotransmitter receptors. Fryxell KJ; Meyerowitz EM J Mol Evol; 1991 Oct; 33(4):367-78. PubMed ID: 1663559 [TBL] [Abstract][Full Text] [Related]
2. Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. Fan Y; Solomon P; Oliver RP; Brown LS Biochim Biophys Acta; 2011 Nov; 1807(11):1457-66. PubMed ID: 21791197 [TBL] [Abstract][Full Text] [Related]
3. The evolutionary relationship between microbial rhodopsins and metazoan rhodopsins. Shen L; Chen C; Zheng H; Jin L ScientificWorldJournal; 2013; 2013():435651. PubMed ID: 23476135 [TBL] [Abstract][Full Text] [Related]
4. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396 [TBL] [Abstract][Full Text] [Related]
5. Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Zhai Y; Heijne WH; Smith DW; Saier MH Biochim Biophys Acta; 2001 Apr; 1511(2):206-23. PubMed ID: 11286964 [TBL] [Abstract][Full Text] [Related]
6. STE2 protein of Saccharomyces kluyveri is a member of the rhodopsin/beta-adrenergic receptor family and is responsible for recognition of the peptide ligand alpha factor. Marsh L; Herskowitz I Proc Natl Acad Sci U S A; 1988 Jun; 85(11):3855-9. PubMed ID: 2836861 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions. Adamian L; Ouyang Z; Tseng YY; Liang J Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602 [TBL] [Abstract][Full Text] [Related]
8. An empirical test of convergent evolution in rhodopsins. Mackin KA; Roy RA; Theobald DL Mol Biol Evol; 2014 Jan; 31(1):85-95. PubMed ID: 24077848 [TBL] [Abstract][Full Text] [Related]
9. Sequence divergence analysis for the prediction of seven-helix membrane protein structures: II. A 3-D model of human rhodopsin. Alkorta I; Du P Protein Eng; 1994 Oct; 7(10):1231-8. PubMed ID: 7855138 [TBL] [Abstract][Full Text] [Related]
10. [The similarity of the primary structure and homology of rhodopsin, beta-adrenoreceptor and muscarinic cholinoceptor]. Tsendina MB; Frishman DI; Levchenko VF; Berman AL Zh Evol Biokhim Fiziol; 1988; 24(6):797-807. PubMed ID: 2854348 [TBL] [Abstract][Full Text] [Related]
11. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Brown LS Photochem Photobiol Sci; 2004 Jun; 3(6):555-65. PubMed ID: 15170485 [TBL] [Abstract][Full Text] [Related]
12. The evolutionary divergence of neurotransmitter receptors and second-messenger pathways. Fryxell KJ J Mol Evol; 1995 Jul; 41(1):85-97. PubMed ID: 7608992 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane. Davies A; Gowen BE; Krebs AM; Schertler GF; Saibil HR J Mol Biol; 2001 Nov; 314(3):455-63. PubMed ID: 11846559 [TBL] [Abstract][Full Text] [Related]
14. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Okano T; Kojima D; Fukada Y; Shichida Y; Yoshizawa T Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5932-6. PubMed ID: 1385866 [TBL] [Abstract][Full Text] [Related]
16. Counterion displacement in the molecular evolution of the rhodopsin family. Terakita A; Koyanagi M; Tsukamoto H; Yamashita T; Miyata T; Shichida Y Nat Struct Mol Biol; 2004 Mar; 11(3):284-9. PubMed ID: 14981504 [TBL] [Abstract][Full Text] [Related]
17. Sequence and expression of four coral G protein-coupled receptors distinct from all classifiable members of the rhodopsin family. Anctil M; Hayward DC; Miller DJ; Ball EE Gene; 2007 May; 392(1-2):14-21. PubMed ID: 17196770 [TBL] [Abstract][Full Text] [Related]
18. Independent HHsearch, Needleman--Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Nordström KJ; Sällman Almén M; Edstam MM; Fredriksson R; Schiöth HB Mol Biol Evol; 2011 Sep; 28(9):2471-80. PubMed ID: 21402729 [TBL] [Abstract][Full Text] [Related]
19. Cloning of the gene encoding honeybee long-wavelength rhodopsin: a new class of insect visual pigments. Chang BS; Ayers D; Smith WC; Pierce NE Gene; 1996 Sep; 173(2):215-9. PubMed ID: 8964502 [TBL] [Abstract][Full Text] [Related]
20. Comparison of stability predictions and simulated unfolding of rhodopsin structures. Tastan O; Yu E; Ganapathiraju M; Aref A; Rader AJ; Klein-Seetharaman J Photochem Photobiol; 2007; 83(2):351-62. PubMed ID: 17576347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]