These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 16635985)
61. Quantitative comparison of proteomic data quality between a 2D and 3D quadrupole ion trap. Blackler AR; Klammer AA; MacCoss MJ; Wu CC Anal Chem; 2006 Feb; 78(4):1337-44. PubMed ID: 16478131 [TBL] [Abstract][Full Text] [Related]
63. Dual-pressure linear ion trap mass spectrometer improving the analysis of complex protein mixtures. Second TP; Blethrow JD; Schwartz JC; Merrihew GE; MacCoss MJ; Swaney DL; Russell JD; Coon JJ; Zabrouskov V Anal Chem; 2009 Sep; 81(18):7757-65. PubMed ID: 19689114 [TBL] [Abstract][Full Text] [Related]
64. Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. Heller M; Mattou H; Menzel C; Yao X J Am Soc Mass Spectrom; 2003 Jul; 14(7):704-18. PubMed ID: 12837592 [TBL] [Abstract][Full Text] [Related]
65. Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers. Sherwood CA; Eastham A; Lee LW; Risler J; Vitek O; Martin DB J Proteome Res; 2009 Sep; 8(9):4243-51. PubMed ID: 19603825 [TBL] [Abstract][Full Text] [Related]
66. Broad-Spectrum Drug Screening Using Liquid Chromatography-Hybrid Triple-Quadrupole Linear Ion Trap Mass Spectrometry. Stone J Methods Mol Biol; 2016; 1383():133-51. PubMed ID: 26660183 [TBL] [Abstract][Full Text] [Related]
67. Peptides quantification by liquid chromatography with matrix-assisted laser desorption/ionization and selected reaction monitoring detection. Lesur A; Varesio E; Domon B; Hopfgartner G J Proteome Res; 2012 Oct; 11(10):4972-82. PubMed ID: 22897511 [TBL] [Abstract][Full Text] [Related]
68. BuildSummary: using a group-based approach to improve the sensitivity of peptide/protein identification in shotgun proteomics. Sheng Q; Dai J; Wu Y; Tang H; Zeng R J Proteome Res; 2012 Mar; 11(3):1494-502. PubMed ID: 22217156 [TBL] [Abstract][Full Text] [Related]
69. Mass measurement accuracy in analyses of highly complex mixtures based upon multidimensional recalibration. Tolmachev AV; Monroe ME; Jaitly N; Petyuk VA; Adkins JN; Smith RD Anal Chem; 2006 Dec; 78(24):8374-85. PubMed ID: 17165830 [TBL] [Abstract][Full Text] [Related]
70. High-resolution quadrupole improves spectral purity and reduces interference from non-target ions in isobaric multiplexed quantitative proteomics. Zhang S; Le Blanc JCY; Larsen B; Colwill K; Burton L; Guna M; Gingras AC; Tate S Anal Chim Acta; 2024 Oct; 1325():343135. PubMed ID: 39244297 [TBL] [Abstract][Full Text] [Related]
71. Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers. Payne AH; Glish GL Methods Enzymol; 2005; 402():109-48. PubMed ID: 16401508 [TBL] [Abstract][Full Text] [Related]
72. Global quantitative proteomic profiling through 18O-labeling in combination with MS/MS spectra analysis. White CA; Oey N; Emili A J Proteome Res; 2009 Jul; 8(7):3653-65. PubMed ID: 19400582 [TBL] [Abstract][Full Text] [Related]
73. Increasing the mass accuracy of high-resolution LC-MS data using background ions: a case study on the LTQ-Orbitrap. Scheltema RA; Kamleh A; Wildridge D; Ebikeme C; Watson DG; Barrett MP; Jansen RC; Breitling R Proteomics; 2008 Nov; 8(22):4647-56. PubMed ID: 18937253 [TBL] [Abstract][Full Text] [Related]
74. Two-Dimensional Mass Spectrometry for Proteomics, a Comparative Study with Cytochrome c. van Agthoven MA; Wootton CA; Chiron L; Coutouly MA; Soulby A; Wei J; Barrow MP; Delsuc MA; Rolando C; O'Connor PB Anal Chem; 2016 Apr; 88(8):4409-17. PubMed ID: 26991046 [TBL] [Abstract][Full Text] [Related]
75. Sub-part-per-million precursor and product mass accuracy for high-throughput proteomics on an electron transfer dissociation-enabled orbitrap mass spectrometer. Wenger CD; McAlister GC; Xia Q; Coon JJ Mol Cell Proteomics; 2010 May; 9(5):754-63. PubMed ID: 20124352 [TBL] [Abstract][Full Text] [Related]
76. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. Qian WJ; Liu T; Monroe ME; Strittmatter EF; Jacobs JM; Kangas LJ; Petritis K; Camp DG; Smith RD J Proteome Res; 2005; 4(1):53-62. PubMed ID: 15707357 [TBL] [Abstract][Full Text] [Related]
77. Effect of mass spectrometric parameters on peptide and protein identification rates for shotgun proteomic experiments on an LTQ-orbitrap mass analyzer. Kalli A; Hess S Proteomics; 2012 Jan; 12(1):21-31. PubMed ID: 22065615 [TBL] [Abstract][Full Text] [Related]
78. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. Peng J; Elias JE; Thoreen CC; Licklider LJ; Gygi SP J Proteome Res; 2003; 2(1):43-50. PubMed ID: 12643542 [TBL] [Abstract][Full Text] [Related]
79. Multiple solvent elution, a method to counter the effects of coelution and ion suppression in LC-MS analysis in bottom up proteomics. Budamgunta H; Maes E; Willems H; Menschaert G; Schildermans K; Kumar AA; Boonen K; Baggerman G J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Aug; 1124():256-264. PubMed ID: 31238262 [TBL] [Abstract][Full Text] [Related]
80. De novo correction of mass measurement error in low resolution tandem MS spectra for shotgun proteomics. Egertson JD; Eng JK; Bereman MS; Hsieh EJ; Merrihew GE; MacCoss MJ J Am Soc Mass Spectrom; 2012 Dec; 23(12):2075-82. PubMed ID: 23007965 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]