BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 16636053)

  • 41. Maedi-visna virus Vif protein uses motifs distinct from HIV-1 Vif to bind zinc and the cofactor required for A3 degradation.
    Knecht KM; Hu Y; Rubene D; Cook M; Ziegler SJ; Jónsson SR; Xiong Y
    J Biol Chem; 2021; 296():100045. PubMed ID: 33465707
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of HIV-1 Vif regions required for CBF-β interaction and APOBEC3 suppression.
    Wang H; Liu B; Liu X; Li Z; Yu XF; Zhang W
    PLoS One; 2014; 9(5):e95738. PubMed ID: 24810617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dispersed and conserved hydrophobic residues of HIV-1 Vif are essential for CBFβ recruitment and A3G suppression.
    Zhou X; Han X; Zhao K; Du J; Evans SL; Wang H; Li P; Zheng W; Rui Y; Kang J; Yu XF
    J Virol; 2014 Mar; 88(5):2555-63. PubMed ID: 24352440
    [TBL] [Abstract][Full Text] [Related]  

  • 44. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction.
    Zhang W; Du J; Evans SL; Yu Y; Yu XF
    Nature; 2011 Dec; 481(7381):376-9. PubMed ID: 22190036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural disorder in the HIV-1 Vif protein and interaction-dependent gain of structure.
    Reingewertz TH; Shalev DE; Friedler A
    Protein Pept Lett; 2010 Aug; 17(8):988-98. PubMed ID: 20450485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Core-binding factor β increases the affinity between human Cullin 5 and HIV-1 Vif within an E3 ligase complex.
    Salter JD; Lippa GM; Belashov IA; Wedekind JE
    Biochemistry; 2012 Nov; 51(44):8702-4. PubMed ID: 23098073
    [TBL] [Abstract][Full Text] [Related]  

  • 47. APOBEC3-mediated editing in HIV type 1 from pediatric patients and its association with APOBEC3G/CUL5 polymorphisms and Vif variability.
    De Maio FA; Rocco CA; Aulicino PC; Bologna R; Mangano A; Sen L
    AIDS Res Hum Retroviruses; 2012 Jun; 28(6):619-27. PubMed ID: 22145963
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of an APOBEC3G binding site in human immunodeficiency virus type 1 Vif and inhibitors of Vif-APOBEC3G binding.
    Mehle A; Wilson H; Zhang C; Brazier AJ; McPike M; Pery E; Gabuzda D
    J Virol; 2007 Dec; 81(23):13235-41. PubMed ID: 17898068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrodynamic and functional analysis of HIV-1 Vif oligomerization.
    Techtmann SM; Ghirlando R; Kao S; Strebel K; Maynard EL
    Biochemistry; 2012 Mar; 51(10):2078-86. PubMed ID: 22369580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conformational Dynamics of the HIV-Vif Protein Complex.
    Ball KA; Chan LM; Stanley DJ; Tierney E; Thapa S; Ta HM; Burton L; Binning JM; Jacobson MP; Gross JD
    Biophys J; 2019 Apr; 116(8):1432-1445. PubMed ID: 30961890
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions between HIV-1 Vif and human ElonginB-ElonginC are important for CBF-β binding to Vif.
    Wang X; Wang X; Zhang H; Lv M; Zuo T; Wu H; Wang J; Liu D; Wang C; Zhang J; Li X; Wu J; Yu B; Kong W; Yu X
    Retrovirology; 2013 Aug; 10():94. PubMed ID: 23988114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway.
    Mehle A; Strack B; Ancuta P; Zhang C; McPike M; Gabuzda D
    J Biol Chem; 2004 Feb; 279(9):7792-8. PubMed ID: 14672928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural basis of HIV-1 Vif-mediated E3 ligase targeting of host APOBEC3H.
    Ito F; Alvarez-Cabrera AL; Kim K; Zhou ZH; Chen XS
    Nat Commun; 2023 Aug; 14(1):5241. PubMed ID: 37640699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A single amino acid difference in human APOBEC3H variants determines HIV-1 Vif sensitivity.
    Zhen A; Wang T; Zhao K; Xiong Y; Yu XF
    J Virol; 2010 Feb; 84(4):1902-11. PubMed ID: 19939923
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of the interaction of full-length HIV-1 Vif protein with its key regulator CBFβ and CRL5 E3 ubiquitin ligase components.
    Zhou X; Evans SL; Han X; Liu Y; Yu XF
    PLoS One; 2012; 7(3):e33495. PubMed ID: 22479405
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F.
    Tian C; Yu X; Zhang W; Wang T; Xu R; Yu XF
    J Virol; 2006 Mar; 80(6):3112-5. PubMed ID: 16501124
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ARIH2 Is a Vif-Dependent Regulator of CUL5-Mediated APOBEC3G Degradation in HIV Infection.
    Hüttenhain R; Xu J; Burton LA; Gordon DE; Hultquist JF; Johnson JR; Satkamp L; Hiatt J; Rhee DY; Baek K; Crosby DC; Frankel AD; Marson A; Harper JW; Alpi AF; Schulman BA; Gross JD; Krogan NJ
    Cell Host Microbe; 2019 Jul; 26(1):86-99.e7. PubMed ID: 31253590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of amino acid residues in HIV-1 Vif critical for binding and exclusion of APOBEC3G/F.
    Yamashita T; Kamada K; Hatcho K; Adachi A; Nomaguchi M
    Microbes Infect; 2008; 10(10-11):1142-9. PubMed ID: 18603011
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases.
    Mahrour N; Redwine WB; Florens L; Swanson SK; Martin-Brown S; Bradford WD; Staehling-Hampton K; Washburn MP; Conaway RC; Conaway JW
    J Biol Chem; 2008 Mar; 283(12):8005-13. PubMed ID: 18187417
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F.
    Russell RA; Pathak VK
    J Virol; 2007 Aug; 81(15):8201-10. PubMed ID: 17522216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.