BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 16636075)

  • 1. Mechanics of neutrophil phagocytosis: experiments and quantitative models.
    Herant M; Heinrich V; Dembo M
    J Cell Sci; 2006 May; 119(Pt 9):1903-13. PubMed ID: 16636075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of neutrophil phagocytosis: behavior of the cortical tension.
    Herant M; Heinrich V; Dembo M
    J Cell Sci; 2005 May; 118(Pt 9):1789-97. PubMed ID: 15827090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ironing out the wrinkles of neutrophil phagocytosis.
    Hallett MB; Dewitt S
    Trends Cell Biol; 2007 May; 17(5):209-14. PubMed ID: 17350842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanics of neutrophils: synthetic modeling of three experiments.
    Herant M; Marganski WA; Dembo M
    Biophys J; 2003 May; 84(5):3389-413. PubMed ID: 12719267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonfucosylated rituximab potentiates human neutrophil phagocytosis through its high binding for FcgammaRIIIb and MHC class II expression on the phagocytotic neutrophils.
    Shibata-Koyama M; Iida S; Misaka H; Mori K; Yano K; Shitara K; Satoh M
    Exp Hematol; 2009 Mar; 37(3):309-21. PubMed ID: 19218011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of neutrophil membrane compliance and microstructure probed with a micropipet-based piconewton force transducer.
    Simon SI; Nyunt T; Florine-Casteel K; Ritchie K; Ting-Beall HP; Evans E; Needham D
    Ann Biomed Eng; 2007 Apr; 35(4):595-604. PubMed ID: 17370125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and functional aspects of membrane skeletons.
    Svetina S; Bozic B; Derganc J; Zeks B
    Cell Mol Biol Lett; 2001; 6(3):677-90. PubMed ID: 11598641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor mobility, the cytoskeleton, and particle binding during phagocytosis.
    Jaumouillé V; Grinstein S
    Curr Opin Cell Biol; 2011 Feb; 23(1):22-9. PubMed ID: 21074980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrative toy model of cell flattening, spreading, and ruffling.
    Herant M; Dembo M
    Biorheology; 2015; 52(5-6):405-14. PubMed ID: 26600264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A probabilistic model for ligand-cytoskeleton transmembrane adhesion: predicting the behavior of microspheres on the surface of migrating cells.
    Thoumine O; Meister JJ
    J Theor Biol; 2000 Jun; 204(3):381-92. PubMed ID: 10816362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of non-adherent suspended neutrophils to complement opsonized pathogens: a new assay using optical traps.
    Suzuki T; Yanai M; Kubo H; Kanda A; Sasaki H; Butler JP
    Cell Res; 2006 Nov; 16(11):887-94. PubMed ID: 17063142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical aspects of microsphere engulfment by human neutrophils.
    Simon SI; Schmid-Schönbein GW
    Biophys J; 1988 Feb; 53(2):163-73. PubMed ID: 3345329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protrusive push versus enveloping embrace: computational model of phagocytosis predicts key regulatory role of cytoskeletal membrane anchors.
    Herant M; Lee CY; Dembo M; Heinrich V
    PLoS Comput Biol; 2011 Jan; 7(1):e1001068. PubMed ID: 21298079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanically stimulated cytoskeleton rearrangement and cortical contraction in human neutrophils.
    Zhelev DV; Hochmuth RM
    Biophys J; 1995 May; 68(5):2004-14. PubMed ID: 7612842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.
    Ananthakrishnan R; Guck J; Wottawah F; Schinkinger S; Lincoln B; Romeyke M; Moon T; Käs J
    J Theor Biol; 2006 Sep; 242(2):502-16. PubMed ID: 16720032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoskeleton-membrane interactions in neuronal growth cones: a finite analysis study.
    Allen KB; Sasoglu FM; Layton BE
    J Biomech Eng; 2009 Feb; 131(2):021006. PubMed ID: 19102565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The motor protein myosin 1G functions in FcγR-mediated phagocytosis.
    Dart AE; Tollis S; Bright MD; Frankel G; Endres RG
    J Cell Sci; 2012 Dec; 125(Pt 24):6020-9. PubMed ID: 23038771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electric-field-induced capillary attraction on the motion of particles at an oil-water interface.
    Boneva MP; Christov NC; Danov KD; Kralchevsky PA
    Phys Chem Chem Phys; 2007 Dec; 9(48):6371-84. PubMed ID: 18060167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of target geometry in phagocytosis.
    Champion JA; Mitragotri S
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):4930-4. PubMed ID: 16549762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cytoskeleton in phagocytosis and macropinocytosis.
    Mylvaganam S; Freeman SA; Grinstein S
    Curr Biol; 2021 May; 31(10):R619-R632. PubMed ID: 34033794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.