These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16636075)

  • 41. Biomimetic membrane systems to study cellular organization.
    Loose M; Schwille P
    J Struct Biol; 2009 Oct; 168(1):143-51. PubMed ID: 19348947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracellular NAD is a regulator for FcgammaR-mediated phagocytosis in murine macrophages.
    Song EK; Lee YR; Yu HN; Kim UH; Rah SY; Park KH; Shim IK; Lee SJ; Park YM; Chung WG; Kim JS; Han MK
    Biochem Biophys Res Commun; 2008 Feb; 367(1):156-61. PubMed ID: 18166151
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemotaxis and phagocytosis in neutrophils is independent of coronin 1.
    Combaluzier B; Pieters J
    J Immunol; 2009 Mar; 182(5):2745-52. PubMed ID: 19234169
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Influence of monoclonal antibodies to human neutrophil antigens, HNA-1a/b and HNA-2a on phagocytosis].
    Taniguchi K; Kaneyasu C; Okamura M; Kobayashi M
    Rinsho Byori; 2007 Nov; 55(11):996-1001. PubMed ID: 18154030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Eukaryotic membrane tethers revisited using magnetic tweezers.
    Hosu BG; Sun M; Marga F; Grandbois M; Forgacs G
    Phys Biol; 2007 Apr; 4(2):67-78. PubMed ID: 17664652
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics.
    Sheetz MP; Sable JE; Döbereiner HG
    Annu Rev Biophys Biomol Struct; 2006; 35():417-34. PubMed ID: 16689643
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles.
    Wang J; Li L
    J R Soc Interface; 2015 Jan; 12(102):20141023. PubMed ID: 25411410
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new dimension in retrograde flow: centripetal movement of engulfed particles.
    Caspi A; Yeger O; Grosheva I; Bershadsky AD; Elbaum M
    Biophys J; 2001 Oct; 81(4):1990-2000. PubMed ID: 11566772
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies.
    Kress H; Stelzer EH; Griffiths G; Rohrbach A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061927. PubMed ID: 16089785
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of temperature on tether extraction, surface protrusion, and cortical tension of human neutrophils.
    Liu B; Goergen CJ; Shao JY
    Biophys J; 2007 Oct; 93(8):2923-33. PubMed ID: 17586566
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phagocytosis of Dictyostelium discoideum studied by the particle-tracking method.
    Ishikawa J; Okano J; Ohki K; Amagai A; Maeda Y; Miyata H
    Exp Cell Res; 2003 Aug; 288(2):268-76. PubMed ID: 12915118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis.
    Richards DM; Endres RG
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6113-8. PubMed ID: 27185939
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling the Mechanosensitivity of Neutrophils Passing through a Narrow Channel.
    Wu T; Feng JJ
    Biophys J; 2015 Dec; 109(11):2235-45. PubMed ID: 26636935
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neutrophils: dead or effete? Cell surface phenotype and implications for phagocytic clearance.
    Dransfield I; Rossi AG; Brown SB; Hart SP
    Cell Death Differ; 2005 Nov; 12(11):1363-7. PubMed ID: 15962007
    [No Abstract]   [Full Text] [Related]  

  • 56. Non-straight cell edges are important to invasion and engulfment as demonstrated by cell mechanics model.
    Perrone MC; Veldhuis JH; Brodland GW
    Biomech Model Mechanobiol; 2016 Apr; 15(2):405-18. PubMed ID: 26148533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrative experimental/computational approach establishes active cellular protrusion as the primary driving force of phagocytic spreading by immune cells.
    Francis EA; Heinrich V
    PLoS Comput Biol; 2022 Aug; 18(8):e1009937. PubMed ID: 36026476
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A mechanical perspective on phagocytic cup formation.
    Vorselen D; Labitigan RLD; Theriot JA
    Curr Opin Cell Biol; 2020 Oct; 66():112-122. PubMed ID: 32698097
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Function of the cytoskeleton in human neutrophils and methods for evaluation.
    Torres M; Coates TD
    J Immunol Methods; 1999 Dec; 232(1-2):89-109. PubMed ID: 10618512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mechanism of phagocytosis: two stages of engulfment.
    Richards DM; Endres RG
    Biophys J; 2014 Oct; 107(7):1542-53. PubMed ID: 25296306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.