BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16636568)

  • 1. Measurements of vocal fold elasticity using the linear skin rheometer.
    Hess MM; Mueller F; Kobler JB; Zeitels SM; Goodyer E
    Folia Phoniatr Logop; 2006; 58(3):207-16. PubMed ID: 16636568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of vocal fold tissue viscoelasticity: approaching the male phonatory frequency range.
    Chan RW
    J Acoust Soc Am; 2004 Jun; 115(6):3161-70. PubMed ID: 15237840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues.
    Chan RW; Titze IR
    Ann Biomed Eng; 2003 Apr; 31(4):482-91. PubMed ID: 12723689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradation of stiffness of the mucosa inferior to the vocal fold.
    Goodyer E; Gunderson M; Dailey SH
    J Voice; 2010 May; 24(3):359-62. PubMed ID: 19303741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic properties of three vocal-fold injectable biomaterials at low audio frequencies.
    Klemuk SA; Titze IR
    Laryngoscope; 2004 Sep; 114(9):1597-603. PubMed ID: 15475789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results.
    Chan RW; Titze IR
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):2008-21. PubMed ID: 10530024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies.
    Kimura M; Chan RW
    Laryngoscope; 2018 Aug; 128(8):E296-E301. PubMed ID: 29243255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical effects of hydration in vocal fold tissues.
    Chan RW; Tayama N
    Otolaryngol Head Neck Surg; 2002 May; 126(5):528-37. PubMed ID: 12075228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies.
    Kimura M; Mau T; Chan RW
    Laryngoscope; 2010 Apr; 120(4):764-8. PubMed ID: 20213661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies.
    Chan RW; Rodriguez ML
    J Acoust Soc Am; 2008 Aug; 124(2):1207-19. PubMed ID: 18681608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic measurements of vocal folds using the linear skin rheometer.
    Dailey SH; Tateya I; Montequin D; Welham NV; Goodyer E
    J Voice; 2009 Mar; 23(2):143-50. PubMed ID: 17485196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of the effects of surface mucus viscosity on the glottic cycle.
    Ayache S; Ouaknine M; Dejonkere P; Prindere P; Giovanni A
    J Voice; 2004 Mar; 18(1):107-15. PubMed ID: 15070230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanomimetic hydrogels for vocal fold lamina propria regeneration.
    Kutty JK; Webb K
    J Biomater Sci Polym Ed; 2009; 20(5-6):737-56. PubMed ID: 19323887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of hyaluronic acid in vocal fold biomechanics.
    Chan RW; Gray SD; Titze IR
    Otolaryngol Head Neck Surg; 2001 Jun; 124(6):607-14. PubMed ID: 11391249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical Flow Amplification Arising From the Variable Deformation of the Subglottic Mucosa.
    Goodyer E; Müller F; Hess M; Kandan K; Farukh F
    J Voice; 2017 Nov; 31(6):669-674. PubMed ID: 28433346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic shear properties of human vocal fold mucosa: theoretical characterization based on constitutive modeling.
    Chan RW; Titze IR
    J Acoust Soc Am; 2000 Jan; 107(1):565-80. PubMed ID: 10641665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscosities of implantable biomaterials in vocal fold augmentation surgery.
    Chan RW; Titze IR
    Laryngoscope; 1998 May; 108(5):725-31. PubMed ID: 9591554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a mechanical larynx with agarose as a soft tissue substitute for vocal fold applications.
    Choo JQ; Lau DP; Chui CK; Yang T; Chng CB; Teoh SH
    J Biomech Eng; 2010 Jun; 132(6):065001. PubMed ID: 20887039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the viscoelastic properties of the vocal folds.
    Wiikmann C; da Silva MA; Arêas EP; Tsuji DH; Sennes LU
    Ann Otol Rhinol Laryngol; 2009 Jun; 118(6):461-4. PubMed ID: 19663378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of vocal fold cover stiffness by laryngeal muscles: a preliminary study.
    Chhetri DK; Berke GS; Lotfizadeh A; Goodyer E
    Laryngoscope; 2009 Jan; 119(1):222-7. PubMed ID: 19117308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.