These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16636986)

  • 1. Towards the identification of the common features of bacterial biofilm development.
    Lasa I
    Int Microbiol; 2006 Mar; 9(1):21-8. PubMed ID: 16636986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gram-negative synthase-dependent exopolysaccharide biosynthetic machines.
    Low KE; Howell PL
    Curr Opin Struct Biol; 2018 Dec; 53():32-44. PubMed ID: 29843050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of a putative polysaccharide locus in Bordetella biofilm development.
    Parise G; Mishra M; Itoh Y; Romeo T; Deora R
    J Bacteriol; 2007 Feb; 189(3):750-60. PubMed ID: 17114249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal.
    Gjermansen M; Ragas P; Tolker-Nielsen T
    FEMS Microbiol Lett; 2006 Dec; 265(2):215-24. PubMed ID: 17054717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The G5 domain: a potential N-acetylglucosamine recognition domain involved in biofilm formation.
    Bateman A; Holden MT; Yeats C
    Bioinformatics; 2005 Apr; 21(8):1301-3. PubMed ID: 15598841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging interactions between matrix components during biofilm development.
    Payne DE; Boles BR
    Curr Genet; 2016 Feb; 62(1):137-41. PubMed ID: 26515441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the crucial role of poly N-acetylglucosamine from Staphylococcus aureus in cellular adhesion and pathogenesis.
    Lin MH; Shu JC; Lin LP; Chong KY; Cheng YW; Du JF; Liu ST
    PLoS One; 2015; 10(4):e0124216. PubMed ID: 25876106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects.
    Arciola CR; Campoccia D; Ravaioli S; Montanaro L
    Front Cell Infect Microbiol; 2015; 5():7. PubMed ID: 25713785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of post-transcriptional gene regulation in bacterial biofilms.
    Martínez LC; Vadyvaloo V
    Front Cell Infect Microbiol; 2014; 4():38. PubMed ID: 24724055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development.
    Whiteley CG; Lee DJ
    Biotechnol Adv; 2015; 33(1):124-141. PubMed ID: 25499693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bap: a family of surface proteins involved in biofilm formation.
    Lasa I; Penadés JR
    Res Microbiol; 2006 Mar; 157(2):99-107. PubMed ID: 16427771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates.
    Frank KL; Patel R
    Infect Immun; 2007 Oct; 75(10):4728-42. PubMed ID: 17635864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm-associated proteins.
    Latasa C; Solano C; Penadés JR; Lasa I
    C R Biol; 2006 Nov; 329(11):849-57. PubMed ID: 17067927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms.
    He J; Hwang G; Liu Y; Gao L; Kilpatrick-Liverman L; Santarpia P; Zhou X; Koo H
    J Bacteriol; 2016 Oct; 198(19):2651-61. PubMed ID: 27161116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.
    Limoli DH; Jones CJ; Wozniak DJ
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development.
    Das T; Sehar S; Manefield M
    Environ Microbiol Rep; 2013 Dec; 5(6):778-86. PubMed ID: 24249286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm.
    Lee K; Lee KM; Kim D; Yoon SS
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Division of labour during Bacillus subtilis biofilm formation.
    Kearns DB
    Mol Microbiol; 2008 Jan; 67(2):229-31. PubMed ID: 18086186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human methicillin-sensitive Staphylococcus aureus biofilms: potential associations with antibiotic resistance persistence and surface polysaccharide antigens.
    Babra C; Tiwari J; Costantino P; Sunagar R; Isloor S; Hegde N; Mukkur T
    J Basic Microbiol; 2014 Jul; 54(7):721-8. PubMed ID: 23686411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production.
    Bobrov AG; Kirillina O; Forman S; Mack D; Perry RD
    Environ Microbiol; 2008 Jun; 10(6):1419-32. PubMed ID: 18279344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.