These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 16637042)
1. Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. Karageorgiou V; Tomkins M; Fajardo R; Meinel L; Snyder B; Wade K; Chen J; Vunjak-Novakovic G; Kaplan DL J Biomed Mater Res A; 2006 Aug; 78(2):324-34. PubMed ID: 16637042 [TBL] [Abstract][Full Text] [Related]
2. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Karageorgiou V; Meinel L; Hofmann S; Malhotra A; Volloch V; Kaplan D J Biomed Mater Res A; 2004 Dec; 71(3):528-37. PubMed ID: 15478212 [TBL] [Abstract][Full Text] [Related]
3. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961 [TBL] [Abstract][Full Text] [Related]
4. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Meinel L; Hofmann S; Betz O; Fajardo R; Merkle HP; Langer R; Evans CH; Vunjak-Novakovic G; Kaplan DL Biomaterials; 2006 Oct; 27(28):4993-5002. PubMed ID: 16765437 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery. Zhang Y; Fan W; Nothdurft L; Wu C; Zhou Y; Crawford R; Xiao Y Tissue Eng Part C Methods; 2011 Aug; 17(8):789-97. PubMed ID: 21506685 [TBL] [Abstract][Full Text] [Related]
6. An ectopic study of apatite-coated silk fibroin scaffolds seeded with AdBMP-2-modified canine bMSCs. Lü K; Xu L; Xia L; Zhang Y; Zhang X; Kaplan DL; Jiang X; Zhang F J Biomater Sci Polym Ed; 2012; 23(1-4):509-26. PubMed ID: 21294971 [TBL] [Abstract][Full Text] [Related]
7. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Shen X; Zhang Y; Gu Y; Xu Y; Liu Y; Li B; Chen L Biomaterials; 2016 Nov; 106():205-16. PubMed ID: 27566869 [TBL] [Abstract][Full Text] [Related]
8. Bone tissue engineering with premineralized silk scaffolds. Kim HJ; Kim UJ; Kim HS; Li C; Wada M; Leisk GG; Kaplan DL Bone; 2008 Jun; 42(6):1226-34. PubMed ID: 18387349 [TBL] [Abstract][Full Text] [Related]
9. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Meinel L; Karageorgiou V; Hofmann S; Fajardo R; Snyder B; Li C; Zichner L; Langer R; Vunjak-Novakovic G; Kaplan DL J Biomed Mater Res A; 2004 Oct; 71(1):25-34. PubMed ID: 15316936 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
11. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [TBL] [Abstract][Full Text] [Related]
12. Silk implants for the healing of critical size bone defects. Meinel L; Fajardo R; Hofmann S; Langer R; Chen J; Snyder B; Vunjak-Novakovic G; Kaplan D Bone; 2005 Nov; 37(5):688-98. PubMed ID: 16140599 [TBL] [Abstract][Full Text] [Related]
13. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269 [TBL] [Abstract][Full Text] [Related]
14. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
15. Regulation of BMP-induced transcription in cultured human bone marrow stromal cells. Diefenderfer DL; Osyczka AM; Garino JP; Leboy PS J Bone Joint Surg Am; 2003; 85-A Suppl 3():19-28. PubMed ID: 12925605 [TBL] [Abstract][Full Text] [Related]
16. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292 [TBL] [Abstract][Full Text] [Related]
17. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Mauney JR; Nguyen T; Gillen K; Kirker-Head C; Gimble JM; Kaplan DL Biomaterials; 2007 Dec; 28(35):5280-90. PubMed ID: 17765303 [TBL] [Abstract][Full Text] [Related]
18. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB; Kundu SC Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [TBL] [Abstract][Full Text] [Related]
19. [Lentivirus-mediated BMP-2 overexpression plasmid transfection into bone marrow mesenchymal stem cells combined with silk fibroin scaffold for osteoblast transformation]. Fan SP; Li XH; Shi CX; Fan CX; Ye FG Zhongguo Gu Shang; 2019 Sep; 32(9):853-860. PubMed ID: 31615185 [TBL] [Abstract][Full Text] [Related]
20. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2]. Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]