These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 16637042)
21. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105 [TBL] [Abstract][Full Text] [Related]
23. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering. Kempen DH; Lu L; Hefferan TE; Creemers LB; Maran A; Classic KL; Dhert WJ; Yaszemski MJ Biomaterials; 2008 Aug; 29(22):3245-52. PubMed ID: 18472153 [TBL] [Abstract][Full Text] [Related]
24. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. Frank O; Heim M; Jakob M; Barbero A; Schäfer D; Bendik I; Dick W; Heberer M; Martin I J Cell Biochem; 2002; 85(4):737-46. PubMed ID: 11968014 [TBL] [Abstract][Full Text] [Related]
25. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes. Shalumon KT; Lai GJ; Chen CH; Chen JP ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766 [TBL] [Abstract][Full Text] [Related]
26. Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Yang XB; Whitaker MJ; Sebald W; Clarke N; Howdle SM; Shakesheff KM; Oreffo RO Tissue Eng; 2004; 10(7-8):1037-45. PubMed ID: 15363161 [TBL] [Abstract][Full Text] [Related]
27. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Wu J; Zheng A; Liu Y; Jiao D; Zeng D; Wang X; Cao L; Jiang X Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589 [TBL] [Abstract][Full Text] [Related]
28. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
29. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295 [TBL] [Abstract][Full Text] [Related]
30. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Zhao J; Zhang Z; Wang S; Sun X; Zhang X; Chen J; Kaplan DL; Jiang X Bone; 2009 Sep; 45(3):517-27. PubMed ID: 19505603 [TBL] [Abstract][Full Text] [Related]
31. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. Song JE; Tripathy N; Lee DH; Park JH; Khang G ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112 [TBL] [Abstract][Full Text] [Related]
32. Effect of autologous bone marrow stromal cell seeding and bone morphogenetic protein-2 delivery on ectopic bone formation in a microsphere/poly(propylene fumarate) composite. Kempen DH; Kruyt MC; Lu L; Wilson CE; Florschutz AV; Creemers LB; Yaszemski MJ; Dhert WJ Tissue Eng Part A; 2009 Mar; 15(3):587-94. PubMed ID: 18925831 [TBL] [Abstract][Full Text] [Related]
33. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199 [TBL] [Abstract][Full Text] [Related]
34. In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. Niu B; Li B; Gu Y; Shen X; Liu Y; Chen L J Biomater Sci Polym Ed; 2017 Feb; 28(3):257-270. PubMed ID: 27931176 [TBL] [Abstract][Full Text] [Related]
35. Combined effect of osteopontin and BMP-2 derived peptides grafted to an adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells. He X; Yang X; Jabbari E Langmuir; 2012 Mar; 28(12):5387-97. PubMed ID: 22372823 [TBL] [Abstract][Full Text] [Related]
36. Characterization of growth and osteogenic differentiation of rabbit bone marrow stromal cells. Roostaeian J; Carlsen B; Simhaee D; Jarrahy R; Huang W; Ishida K; Rudkin GH; Yamaguchi DT; Miller TA J Surg Res; 2006 Jun; 133(2):76-83. PubMed ID: 16360178 [TBL] [Abstract][Full Text] [Related]
37. Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Zhang H; Migneco F; Lin CY; Hollister SJ Tissue Eng Part A; 2010 Nov; 16(11):3441-8. PubMed ID: 20560772 [TBL] [Abstract][Full Text] [Related]
38. Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Kim HJ; Kim UJ; Leisk GG; Bayan C; Georgakoudi I; Kaplan DL Macromol Biosci; 2007 May; 7(5):643-55. PubMed ID: 17477447 [TBL] [Abstract][Full Text] [Related]
39. Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study. Rockwood DN; Gil ES; Park SH; Kluge JA; Grayson W; Bhumiratana S; Rajkhowa R; Wang X; Kim SJ; Vunjak-Novakovic G; Kaplan DL Acta Biomater; 2011 Jan; 7(1):144-51. PubMed ID: 20656075 [TBL] [Abstract][Full Text] [Related]
40. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]