BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16637267)

  • 1. [Small heat shock proteins and adaptation to hypertermia in various Drosophila species].
    Shilova VIu; Garbuz DG; Evgen'ev MB; Zatsepina OG
    Mol Biol (Mosk); 2006; 40(2):271-6. PubMed ID: 16637267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Evolution of the response to heat shock in genus Drosophila].
    Garbuz DG; Molodtsov VB; Velikodvorskaia VV; Evgen'ev MB; Zatsepina OG
    Genetika; 2002 Aug; 38(8):1097-109. PubMed ID: 12244694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic thermoprotection in a desert-dwelling Drosophila species.
    Newman AE; Xiao C; Robertson RM
    J Neurobiol; 2005 Aug; 64(2):170-80. PubMed ID: 15818554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila.
    Gerloff-Elias A; Barua D; Mölich A; Spijkerman E
    FEMS Microbiol Ecol; 2006 Jun; 56(3):345-54. PubMed ID: 16689867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock genes in the willistoni group of Drosophila: induced puffs and proteins.
    Bonorino CB; Couto e Silva T; Abdelhay E; Valente VL
    Cytobios; 1993; 73(292):49-64. PubMed ID: 8500347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Molecular mechanisms of adaptation to hyperthermia in higher organisms. III. Induction of heat-shock proteins in two Leishmania species].
    Ul'masov KhA; Ovezmukhammedov A; Karaev KK; Evgen'ev MB
    Mol Biol (Mosk); 1988; 22(6):1583-9. PubMed ID: 3252152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males.
    Folk DG; Zwollo P; Rand DM; Gilchrist GW
    J Exp Biol; 2006 Oct; 209(Pt 20):3964-73. PubMed ID: 17023590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cold exposure on survival and stress protein expression of Drosophila melanogaster at different development stages.
    Tsutsayeva AA; Sevryukova LG
    Cryo Letters; 2001; 22(3):145-50. PubMed ID: 11788853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of thermotolerance and the heat-shock response: evidence from inter/intraspecific comparison and interspecific hybridization in the virilis species group of Drosophila. I. Thermal phenotype.
    Garbuz D; Evgenev MB; Feder ME; Zatsepina OG
    J Exp Biol; 2003 Jul; 206(Pt 14):2399-408. PubMed ID: 12796457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adult heat tolerance variation in Drosophila melanogaster is not related to Hsp70 expression.
    Jensen LT; Cockerell FE; Kristensen TN; Rako L; Loeschcke V; McKechnie SW; Hoffmann AA
    J Exp Zool A Ecol Genet Physiol; 2010 Jan; 313(1):35-44. PubMed ID: 19739085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: role of ROS generation.
    Singh MP; Reddy MM; Mathur N; Saxena DK; Chowdhuri DK
    Toxicol Appl Pharmacol; 2009 Mar; 235(2):226-43. PubMed ID: 19118569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-induced hormesis in longevity of two sibling Drosophila species.
    Scannapieco AC; Sørensen JG; Loeschcke V; Norry FM
    Biogerontology; 2007 Jun; 8(3):315-25. PubMed ID: 17160437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Heat shock proteins: functions and role in adaptation to hyperthermia].
    Evgen'ev MB; Garbuz DG; Zatsepina OG
    Ontogenez; 2005; 36(4):265-73. PubMed ID: 16208937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The heat-shock reaction is disturbed in a Drosophila virilis strain incapable of a neurohormonal stress reaction].
    Vasenkova IA; Khlebodarova TM; Sukhanova MZh; Gruntenko NE; Grenbek LG; Raushenbakh IIu
    Tsitol Genet; 2000; 34(3):43-8. PubMed ID: 10920860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Temperature modification of the mutation process and heat shock proteins].
    Tikhomirova MM; Mazur EL; Barabanova LV; Mamon LA
    Genetika; 1993 Feb; 29(2):280-7. PubMed ID: 8486258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of heat-shock proteins in recovery of cell proliferation following high temperature treatment of Drosophila melanogaster larvae].
    Mamon LA; Kutskova IuA
    Genetika; 1993 May; 29(5):791-8. PubMed ID: 8335237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparative analysis of hsp70 gene cluster in Drosophila virilis species group].
    Garbuz DG; Iushenova IA; Evgen'ev MB; Zatsepina OG
    Mol Biol (Mosk); 2009; 43(1):44-52. PubMed ID: 19334525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Larvae of related Diptera species from thermally contrasting habitats exhibit continuous up-regulation of heat shock proteins and high thermotolerance.
    Garbuz DG; Zatsepina OG; Przhiboro AA; Yushenova I; Guzhova IV; Evgen'ev MB
    Mol Ecol; 2008 Nov; 17(21):4763-77. PubMed ID: 19140990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.
    Norry FM; Scannapieco AC; Sambucetti P; Bertoli CI; Loeschcke V
    Mol Ecol; 2008 Oct; 17(20):4570-81. PubMed ID: 18986501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of juvenile hormone metabolism in the adaptation of Drosophila populations to stressful environmental conditions].
    Gruntenko NE; Khlebodarova TM; Mazurov MM; Grenbék LG; Sukhanova MZh; Zakharov IK; Khémmok BD; Raushenbakh IIu
    Genetika; 1996 Sep; 32(9):1191-8. PubMed ID: 9026460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.